Heavens

Solar activity varies in 11-year cycles. As the activity cycle switches to a new one, the Sun is usually very calm for several years.

When two neutron stars slam together, the result is sometimes a black hole that swallows all but the gravitational evidence of the collision. However, in a series of simulations, an international team of researchers including a Penn State scientist determined that these typically quiet--at least in terms of radiation we can detect on Earth--collisions can sometimes be far noisier.

Planet-forming environments can be much more complex and chaotic than previously expected. This is evidenced by a new image of the star RU Lup, made with the Atacama Large Millimeter/submillimeter Array (ALMA).

Maunakea, Hawaii - Astronomers using two Maunakea Observatories - Subaru Telescope and W. M. Keck Observatory - combined with the power of machine learning, have discovered a nearby galaxy that has broken the record for having the lowest level of oxygen ever seen. The researchers measured its oxygen abundance at only 1.6 percent that of the Sun, suggesting the galaxy, named HSC J1631+4426, only recently started making stars.

The study will be published in the August 3, 2020 issue of The Astrophysical Journal and is available in preprint format on arXiv.org.

New results achieved by combining big data captured by the Subaru Telescope and the power of machine learning have discovered a galaxy with an extremely low oxygen abundance of 1.6% solar abundance, breaking the previous record of the lowest oxygen abundance. The measured oxygen abundance suggests that most of the stars in this galaxy formed very recently.

Our solar system has one habitable planet -- Earth. A new study shows other stars could have as many as seven Earth-like planets in the absence of a gas giant like Jupiter.

This is the conclusion of a study led by UC Riverside astrobiologist Stephen Kane published this week in the Astronomical Journal.

This study, just accepted for publication in Astronomy & Astrophysics Letters, is the first evidence for large scale dynamical differences between active and non-active galaxies in the local universe. The astronomers participating are from the Instituto de Astrofísica de Canarias (IAC) and the University of La Laguna (ULL); as well as the National Autonomous University of Mexico (UNAM), the Complutense University of Madrid (UCM) and the Instituto de Astrofísica de Andalucia (IAA).

Using data from NASA's Solar Dynamics Observatory, or SDO, scientists have developed a new model that successfully predicted seven of the Sun's biggest flares from the last solar cycle, out of a set of nine. With more development, the model could be used to one day inform forecasts of these intense bursts of solar radiation.

Severe space weather could be forecast with greater accuracy and reliability than ever before, according to a new study, which presents a physics-based method for predicting imminent large solar flares. Solar flares - massive explosions of electromagnetic radiation, plasma and charged particles in the Sun's outer atmosphere - are triggered by the sudden release of energy stored in the twisted magnetic fields that occur around visible sunspots.

Resembling a butterfly with its symmetrical structure, beautiful colours, and intricate patterns, this striking bubble of gas -- known as NGC 2899 -- appears to float and flutter across the sky in this new picture from ESO's Very Large Telescope (VLT). This object has never before been imaged in such striking detail, with even the faint outer edges of the planetary nebula glowing over the background stars.

Two teams of astronomers have made a compelling case in the 33-year-old mystery surrounding Supernova 1987A. Based on observations of the Atacama Large Millimeter/submillimeter Array (ALMA) and a theoretical follow-up study, the scientists provide new insight for the argument that a neutron star is hiding deep inside the remains of the exploded star. This would be the youngest neutron star known to date.

Aaron Lojewski, who leads aurora sightseeing tours in Alaska, was lucky enough to photograph a "eruption" of brilliant pink light in the night skies one night in February.

The same perturbations of the Earth's magnetic field that lit up the sky for Lojewski's camera were also captured by seismometers on the ground, a team of researchers reports in the journal Seismological Research Letters.

Extensive power outages and satellite blackouts that affect air travel and the internet are some of the potential consequences of massive solar storms. These storms are believed to be caused by the release of enormous amounts of stored magnetic energy due to changes in the magnetic field of the sun's outer atmosphere - something that until now has eluded scientists' direct measurement. Researchers believe this recent discovery could lead to better "space weather" forecasts in the future.

Prof. LIN Jun from the Yunnan Observatories of Chinese Academy of Sciences, collaborating with Prof. CHEN Bin from the New Jersey Institute of Technology, conducted the radio observation of the magnetic field distribution and relativistic electron acceleration characteristics in the current sheet of solar flares.

The related research results were published in the journal Nature Astronomy on July 27, 2020.

The composition of Antarctic micrometeorites and other tiny but precious rocks such as those from space missions--is really hard to analyze without some sample loss. But a new technique should make it easier, cheaper and faster to characterize them while preserving more of the sample. The findings were published on the peer reviewed journal Meteoritics & Planetary Science on May 21.