Heavens

The NASA/ESA Hubble Space Telescope has captured the closest images yet of the sky's latest visitor to make the headlines, comet C/2020 F3 NEOWISE, after it passed by the Sun. The new images of the comet were taken on 8 August and feature the visitor's coma, the fine shell that surrounds its nucleus, and its dusty output.

Solar flares emit sudden, strong bursts of electromagnetic radiation from the Sun's surface and its atmosphere, and eject plasma and energetic particles into inter-planetary space. Since large solar flares can cause severe space weather disturbances affecting Earth, to mitigate their impact their occurrence needs to be predicted. However, as the onset mechanism of solar flares is unclear, most flare prediction methods so far have relied on empirical methods.

The Sun is a magnetized star. Its magnetic field is essentially three dimensional and it occupies all layers of the solar atmosphere. However, routine measurements of the solar magnetic field have only been achieved at the photospheric level, or the solar surface.

Lacking precise knowledge about the magnetic field in the outermost solar atmosphere, the corona, has impeded our understanding of the solar magnetism and many phenomena in the solar atmosphere.

Imagine that the size of a bacterium is measured from a distance of about 4500 light-years. This would be an incredible measurement, considering that a bacterium is so small that a microscope is required to see it, and what an enormous distance light can travel in 4500 years, given that it can round the Earth more than seven times in just one second. But a small deformation of the size of a bacterium, that is an extra height of a few micrometres in one direction, has now been inferred for a neutron star at a distance of about 4500 light-years, from a research by Prof.

An international team of researchers have discovered a dense, cold gas that's been shot out from the centre of the Milky Way "like bullets".

Exactly how the gas has been ejected is still a mystery, but the research team, including Professor Naomi McClure-Griffiths from The Australian National University (ANU), say their findings could have important implications for the future of our galaxy.

"Galaxies can be really good at shooting themselves in the foot," Professor McClure-Griffiths said.

The question of whether life exists beyond the Earth is one of humanity's most fundamental questions. Future NASA missions, for example, aim to examine the ice moons of Jupiter and Saturn, which may potentially shelter life in the liquid oceans underneath the thick layer of ice, on the ground. Proving traces of life beyond the Earth is extremely challenging, however.

How complete is our census of the Sun's closest neighbors? Astronomers using NSF's NOIRLab facilities and a team of data-sleuthing volunteers participating in Backyard Worlds: Planet 9, a citizen science project, have discovered roughly 100 cool worlds near the Sun -- objects more massive than planets but lighter than stars, known as brown dwarfs. Several of these newly discovered worlds are among the very coolest known, with a few approaching the temperature of Earth -- cool enough to harbor water clouds.

CHAMPAIGN, Ill. -- Imagine reading by the light of an exploded star, brighter than a full moon - it might be fun to think about, but this scene is the prelude to a disaster when the radiation devastates life as we know it. Killer cosmic rays from nearby supernovae could be the culprit behind at least one mass extinction event, researchers said, and finding certain radioactive isotopes in Earth's rock record could confirm this scenario.

Maunakea, Hawaii - How complete is our census of the Sun's closest neighbors? Astronomers and a team of data-sleuthing volunteers participating in Backyard Worlds: Planet 9, a citizen science project, have discovered roughly 100 cool worlds near the Sun - objects more massive than planets but lighter than stars, known as brown dwarfs.

For the first time, researchers have found a way to describe conditions deep in the convection zone of "white dwarf" stars, which are home to some of the densest collections of matter in the Universe.

In a project conducted at the National Ignition Facility at Lawrence Livermore National Laboratory, the research team, including University of Rochester engineering professor Gilbert (Rip) Collins, simulated the crushing pressure created as stars cease to produce their own fuel, leaving only an extremely dense core.

ORLANDO, Aug. 17, 2020 - An international team of researchers using data from Arecibo Observatory and the Fermi Space Telescope have discovered what they call a "gamma-ray heartbeat" coming from a cosmic gas cloud.

The cloud is in the constellation Aquilla and "beats" in rhythm with a black hole 100 light years away in a microquasar system known as SS 433. The results were published today in the journal Nature Astronomy.

A special type of aurora, draped east-west across the night sky like a glowing pearl necklace, is helping scientists better understand the science of auroras and their powerful drivers out in space. Known as auroral beads, these lights often show up just before large auroral displays, which are caused by electrical storms in space called substorms. Previously, scientists weren't sure if auroral beads are somehow connected to other auroral displays as a phenomenon in space that precedes substorms, or if they are caused by disturbances closer to Earth's atmosphere.

Scientists at Skolkovo Institute of Science and Technology (Skoltech), together with colleagues from the Karl-Franzens University of Graz & the Kanzelhöhe Observatory (Austria), Jet Propulsion Laboratory of California Institute of Technology (USA), Helioresearch (USA) and Space Research Institute of the Russian Academy of Sciences (Russia) developed a method to study fast Coronal Mass Ejections, powerful ejections of magnetized matter from the outer atmosphere of the Sun.

Observations by NASA's Hubble Space Telescope are showing that the unexpected dimming of the supergiant star Betelgeuse was most likely caused by an immense amount of hot material ejected into space, forming a dust cloud that blocked starlight coming from Betelgeuse's surface.

New observations by the NASA/ESA Hubble Space Telescope suggest that the unexpected dimming of the supergiant star Betelgeuse was most likely caused by an immense amount of hot material ejected into space, forming a dust cloud that blocked starlight coming from Betelgeuse's surface.