Heavens

As nuclear fusion engines, most stars live placid lives for hundreds of millions to billions of years. But near the end of their lives they can turn into crazy whirligigs, puffing off shells and jets of hot gas. Astronomers have employed Hubble's full range of imaging capabilities to dissect such crazy fireworks happening in two nearby young planetary nebulas. NGC 6302 is dubbed the Butterfly Nebula because of its wing-like appearance. In addition, NGC 7027 resembles a jewel bug, an insect with a brilliantly colorful metallic shell.

Far, far beyond the orbits of the planets lie the hazy contours of the magnetic bubble in space that we call home.

This is the heliosphere, the vast bubble that is generated by the Sun's magnetic field and envelops all the planets. The borders of this cosmic bubble are not fixed. In response to the Sun's gasps and sighs, they shrink and stretch over the years.

An international collaboration bringing together over 200 scientists from 13 countries has shown that the very high-energy gamma-ray emission from quasars, galaxies with a highly energetic nucleus, is not concentrated in the region close to their central black hole but in fact extends over several thousand light-years along jets of plasma. This discovery shakes up current scenarios for the behaviour of such plasma jets.

On June 15, 2020, a citizen scientist spotted a never-before-seen comet in data from the Solar and Heliospheric Observatory, or SOHO -- the 4,000th comet discovery in the spacecraft's 25-year history.

The first confirmed heartbeat of a supermassive black hole is still going strong more than ten years after first being observed.

X-ray satellite observations spotted the repeated beat after its signal had been blocked by our Sun for a number of years.

Astronomers say this is the most long lived heartbeat ever seen in a black hole and tells us more about the size and structure close to its event horizon - the space around a black hole from which nothing, including light, can escape.

Amyloids, abnormal fibrillar aggregates of proteins, are associated with various disorders such as Alzheimer's disease. Therefore, an in-depth understanding of the mechanisms of amyloid formation is critical for developing clinical strategies and drugs against these diseases. However, accumulating evidence suggests that amyloid formation processes and the consequent morphology of fibrils can be affected by various environmental factors. This is an obstacle for the integrative understanding of the mechanisms underlying amyloid formations.

When Jocelyn Bell first observed the emissions of a pulsar in 1967, the rhythmic pulses of radio waves so confounded astronomers that they considered whether the light could be signals sent by an alien civilization.

One of the biggest and longest-standing questions in the history of human thought is whether there are other intelligent life forms within our Universe. Obtaining good estimates of the number of possible extraterrestrial civilizations has however been very challenging.

Viruses and other disease-causing microbes influence the type of immune response their hosts will develop against them. In some cases, the predominant response involves antibodies, proteins made by the immune system that specifically recognize parts of the invading microbe and mediate its destruction. In other cases, immune cells are trained to recognize the microbe and lead the attack against it.

Scientists have found a way of measuring neutron lifetime from space for the first time - a discovery that could teach us more about the early universe.

Knowing the lifetime of neutrons is key to understanding the formation of elements after the Big Bang that formed the universe 13.8 billion years ago.

Scientists at Durham University, UK, and Johns Hopkins Applied Physics Laboratory, USA,
used data from NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft to make their discovery.

Extreme space weather events can significantly impact systems such as satellites, communications systems, power distribution and aviation. They are driven by solar activity which is known to have an irregular but roughly 11 year cycle. By devising a new, regular 'sun clock', researchers have found that the switch on and off of periods of high solar activity is quite sharp, and are able to determine the switch on/off times. Their analysis shows that whilst extreme events can happen at any time, they are much less likely to occur in the quiet interval.

Scientists at Skolkovo Institute of Science and Technology (skoltech), together with colleagues from the Karl-Franzens University of Graz and the Kanzelhoehe Observatory (Austria) developed an automatic method for detecting "coronal dimmings", or "traces" of coronal mass ejections at the Sun, and also proved that they are reliable indicators of the early diagnosis of powerful emissions of energy from the atmosphere of the Sun, traveling to Earth at great speed.

Space weather forecasters need to predict the speed of solar eruptions, as much as their size, to protect satellites and the health of astronauts, scientists have found.

The first confirmed heartbeat of a supermassive black hole is still going strong more than ten years after first being observed.

X-ray satellite observations spotted the repeated beat after its signal had been blocked by our Sun for a number of years.

Astronomers say this is the most long lived heartbeat ever seen in a black hole and tells us more about the size and structure close to its event horizon - the space around a black hole from which nothing, including light, can escape.

The formation of our solar system was a messy affair. Most of the material that existed before its formation -- material formed around other, long-dead stars -- was vaporized, then recondensed into new materials. But some grains of that material, formed before the sun's birth, still persist.