Heavens
Biology - Volcanic microbes
Oak Ridge National Laboratory contributed to an international study that found almost 300 novel types of microbes living near a deep sea volcano. These microbes, which could be used in biotechnology, reveal new insights about their extreme underwater environment.
Physicists at Washington University in St. Louis have discovered how to locally add electrical charge to an atomically thin graphene device by layering flakes of another thin material, alpha-RuCl3, on top of it.
A paper published in the journal Nano Letters describes the charge transfer process in detail. Gaining control of the flow of electrical current through atomically thin materials is important to potential future applications in photovoltaics or computing.
Data from the DESI (Dark Energy Spectroscopic Instrument) Legacy Imaging Surveys have revealed over 1200 new gravitational lenses, approximately doubling the number of known lenses. Discovered using machine learning trained on real data, these warped and stretched images of distant galaxies provide astronomers with a flood of new targets with which to measure fundamental properties of the Universe such as the Hubble constant, which describes the expanding Universe.
Earth gets blasted by mild short gamma-ray bursts (GRBs) most days. But sometimes a giant flare like GRB 200415A arrives at our galaxy, sweeping along energy that dwarfs our sun. In fact, the most powerful explosions in the universe are gamma-ray bursts.
Now scientists have shown that GRB 200415A came from another possible source for short GRBs. It erupted from a very rare, powerful neutron star called a magnetar.
Previous detected GRB's came from relatively far away from our home galaxy the Milky Way. But this one was from much closer to home, in cosmic terms.
What The Study Did: Variations and changes in national and state rates of neonatal abstinence syndrome and maternal opioid-related diagnoses were examined in this observational study.
Authors: Ashley H. Hirai, Ph.D., of the Health Resources and Services Administration in Rockville, Maryland, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jama.2020.24991)
In 2020, astronomers added a new member to an exclusive family of exotic objects with the discovery of a magnetar. New observations from NASA's Chandra X-ray Observatory help support the idea that it is also a pulsar, meaning it emits regular pulses of light.
Magnetars are a type of neutron star, an incredibly dense object mainly made up of tightly packed neutron, which forms from the collapsed core of a massive star during a supernova.
Femtosecond hard X-ray pulses are an important tool for unraveling structure changes of condensed matter on atomic length and time scales. A novel laser-driven X-ray source provides femtosecond copper Kα pulses at a 1 kHz repetition rate with an unprecedented flux of some 10^12 X-ray photons per second.
Researchers at Paderborn University have developed a new method of distance measurement for systems such as GPS, which achieves more precise results than ever before. Using quantum physics, the team led by Leibniz Prize winner Professor Christine Silberhorn has successfully overcome the so-called resolution limit, which causes the "noise" we may see in photos, for example. Their findings have just been published in the academic journal "Physical Review X Quantum" (PRX Quantum).
Diamond is the hardest material in nature. But out of many expectations, it also has great potential as an excellent electronic material. A joint research team led by City University of Hong Kong (CityU) has demonstrated for the first time the large, uniform tensile elastic straining of microfabricated diamond arrays through the nanomechanical approach. Their findings have shown the potential of strained diamonds as prime candidates for advanced functional devices in microelectronics, photonics, and quantum information technologies.
It took fifteen years of imaging and nearly three years of stitching the pieces together to create the largest image ever made, the 8-trillion-pixel mosaic of Mars' surface. Now, the first study to utilize the image in its entirety provides unprecedented insight into the ancient river systems that once covered the expansive plains in the planet's southern hemisphere. These three billion-year-old sedimentary rocks, like those in Earth's geologic record, could prove valuable targets for future exploration of past climates and tectonics on Mars.
Catalysts are indispensable for many technologies. To further improve heterogeneous catalysts, it is required to analyze the complex processes on their surfaces, where the active sites are located. Scientists of Karlsruhe Institute of Technology (KIT), together with colleagues from Spain and Argentina, have now reached decisive progress: As reported in Physical Review Letters, they use calculation methods with so-called hybrid functionals for the reliable interpretation of experimental data. (DOI: 10.1103/PhysRevLett.125.256101).
Astronomers using NASA's Hubble Space Telescope watched a mysterious dark vortex on Neptune abruptly steer away from a likely death on the giant blue planet.
The bedrock beneath our feet has a reputation as an inhospitable place. In contrast, soil is known to be teeming with life - from microbes to plant roots to bugs.
This perspective has set soil up as the most important source of carbon dioxide produced by forests, the CO2 being a natural byproduct of the life within it. But according to a study led by The University of Texas at Austin, the prevailing view is just scratching the surface.
FAYETTEVILLE, Ark. - Water on Mars, in the form of brines, may not be as widespread as previously thought, according to a new study by researchers at the Arkansas Center for Space and Planetary Sciences.
Researchers combined data on brine evaporation rates, collected through experiments at the center's Mars simulation chamber, with a global weather circulation model of the planet to create planetwide maps of where brines are most likely to be found.
A pioneering study carried out among patients in remission from Rheumatoid Arthritis has determined that they display significantly higher temperatures than healthy individuals.
The work, published in PLOSONE and undertaken by University of Malta and Staffordshire University, compares thermographic patterns of patients with Rheumatoid Arthritis (RA) in remission with healthy individuals.