PITTSBURGH, Jan. 21, 2020 - Commercially insured children in the U.S. are seeing pediatricians less often than they did a decade ago, according to a new analysis led by a pediatrician-scientist at the University of Pittsburgh and UPMC Children's Hospital of Pittsburgh.

But whether that's good or bad is unclear, the researchers say in the study, published today in JAMA Pediatrics.

TORONTO - Female and male soccer players had similar rates of head collision events during elite tournaments such as the World Cup but half of the female players involved received medical assessments, compared with only one third of the impacted male players, according to research led by St. Michael's Hospital of Unity Health Toronto.

A UNSW study published today in Nature Communications presents an exciting step towards domain-wall nanoelectronics: a novel form of future electronics based on nano-scale conduction paths, and which could allow for extremely dense memory storage.

FLEET researchers at the UNSW School of Materials Science and Engineering have made an important step in solving the technology's primary long-standing challenge of information stability.

Domain walls are 'atomically sharp' topological defects separating regions of uniform polarisation in ferroelectric materials.

Organic self-assembled monolayers (SAMs) have been around for over forty years. The most widely used form is based on thiols, bound to a metal surface. However, although the thiol SAMs are very versatile, they are also chemically unstable. Exposure of these monolayers to air will lead to oxidation and breakdown within a single day. University of Groningen scientists have now created SAMs using buckyballs functionalized with 'tails' of ethylene glycol.

Presently, Earth is the only known location where life exists in the Universe. This year the Nobel Prize in physics was awarded to three astronomers who proved, almost 20 years ago, that planets are common around stars beyond the solar system. Life comes in various forms, from cell-phone-toting organisms like humans to the ubiquitous micro-organisms that inhabit almost every square inch of the planet Earth, affecting almost everything that happens on it.

Osaka, Japan - A team including researchers from Osaka University has produced a new molecular emitter for organic light-emitting diodes (OLEDs). Using rational chemical design with U-shaped synthetic building blocks, the scientists were able to arrange the electron donors and acceptors into a large ring called a "macrocycle." The wheel-shaped molecule could potentially be used not only in OLEDs but also in tiny, energy-efficient chemical sensors in the future.

Many teenagers are struggling to control their impulses on the internet, in a scramble for quick thrills and a sense of power online, potentially increasing their risks of becoming cyber criminals.

A new study by Flinders Criminology analysed existing links between legal online activities and cybercrime- for example, how viewing online pornography progresses to opening illegal content, and motivations to evolve from online gaming to hacking.

The international team works on a computational model able to predict the properties of new molecules based on the analysis of fundamental chemical laws. The project was supported by the Russian Science Foundation (title "Using AI methods for the planning of chemical synthesis").

Biophysicists from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases have teamed up with colleagues from Canada, the U.S., Japan, France, and Germany to shed light on the structure and functioning mechanism of the CysLT receptors, which regulate inflammatory responses associated with allergic disorders. Their findings are reported in Nature Communications.

Often, patients from the same family and carriers of the same genetic mutation, develop a disease differently. This disparity may be due to the existence of mutations in other secondary genes, which influence the onset and progression of the disease caused by the main mutation. As an example, members of a family who are carriers of the same mutation may show symptoms of the disease at age 20, and others at age 50. Knowing what factors influence the onset and development of the disease would help a better prognosis and the application of preventive treatments.

Researchers at Chalmers University of Technology and Gothenburg University in Sweden have achieved something long thought almost impossible - counting the molecules of the neurotransmitter glutamate released when a signal is transferred between two brain cells. With a new analysis method, they showed that the brain regulates its signals using glutamate in more ways than previously realised.

WINSTON-SALEM, NC - JAN. 20, 2020 - A patient-specific tumor organoid platform developed by Wake Forest Institute for Regenerative Medicine (WFIRM) researchers and their cancer center colleagues could someday take the guessing game out of immunotherapy treatments. The hope is that, one day, these tumor organoids will be used to personalize patients' treatments, to focus on those that will best help them fight their own cancer.

Tokyo, Japan - Researchers at the University of Tokyo and Kozo Keikaku Engineering Inc. have introduced a method for enhancing the power of existing algorithms to forecast the future of unknown time series. By combining the predictions of many suboptimal forecasts, they were able to construct a consensus prediction that tended to outperform existing methods. This research may help provide early warnings for floods, economic shocks, or changes in the weather.

Historical biodiversity data is being obtained from museum specimens, literature, classic monographs and old photographs, yet those sources can be damaged, lost or not completely adequate. That brings us to the need of finding additional, even if non-traditional, sources.

Biodiversity observations are made not only by researchers, but also by citizens, though rather often these data are poorly documented or not publicly accessible. Nowadays, this type of data can be found mostly with online citizen science projects resources.

Nagoya University scientists, in cooperation with Asahi Kasei Corporation, have succeeded in designing a laser diode that emits deep-ultraviolet light, according to research published in the journal Applied Physics Express.

"Our laser diode emits the world's shortest lasing wavelength, at 271.8 nanometers (nm), under pulsed [electric] current injection at room temperature," says Professor Chiaki Sasaoka of Nagoya University's Center for Integrated Research of Future Electronics.