Tech

The spike protein on the surface of the SARS-CoV-2 coronavirus can adopt at least ten distinct structural states, when in contact with the human virus receptor ACE2, according to research from the Francis Crick Institute published in Nature today (Thursday).

This new insight into the mechanism of infection will equip research groups with the understanding needed to inform studies into vaccines and treatments.

- Airway cell analyses showing an activated immune axis could pinpoint the COVID-19 patients who will most benefit from targeted therapies. -

KAIST researchers have identified key markers that could help pinpoint patients who are bound to get a severe reaction to COVID-19 infection. This would help doctors provide the right treatments at the right time, potentially saving lives. The findings were published in the journal Frontiers in Immunology on August 28.

A paper published in the Proceedings of the National Academy of Science (PNAS) explains the advantage that animals have of using a specific type of chaotic type of movement called a "Lévy walk," and how this type of behavior emerges. Using computer modeling, the author shows that this type of movement can allow animals to make flexible decisions between "exploitation" and "exploring" in an environment.

For a long time, geoscientists have assumed that the Alps were formed when the Adriatic plate from the south collided with the Eurasian plate in the north. According to the textbooks, the Adriatic plate behaved like a bulldozer, thrusting rock material up in front of it into piles that formed the mountains. Supposedly, their weight subsequently pushed the underlying continental plate downwards, resulting in the formation of a sedimentary basin in the north adjacent to the mountains - the Swiss Molasse Plateau.

ITHACA, N.Y. - Pity the glycan.

These complex sugar molecules are attached to 80% of the proteins in the human body, making them an essential ingredient of life. But this process, known as glycosylation, has been somewhat overshadowed by flashier biomolecular processes such as transcription and translation.

"Do not erase." "Recycle me." "Free to a good home." Humans post these signs to indicate whether something has value or not, whether it should be disposed of or not. Inside our cells, a sophisticated recycling system uses its own enzymatic signs to flag certain cells for destruction -- and a different set of enzymes can remove those flags.

New research from King's College London has found that COVID-19 may be diagnosed on the same emergency scans intended to diagnose stroke. The findings have important implications in the management of patients presenting with suspected stroke through early identification of COVID-19.

CAMBRIDGE, MA -- Since the start of the Covid-19 pandemic, researchers at MIT and the Broad Institute of MIT and Harvard, along with their collaborators at the University of Washington, Fred Hutchinson Cancer Research Center, Brigham and Women's Hospital, and the Ragon Institute, have been working on a CRISPR-based diagnostic for Covid-19 that can produce results in 30 minutes to an hour, with similar accuracy as the standard PCR diagnostics now used.

UPTON, NY--An international collaboration of theoretical physicists--including scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory (BNL) and the RIKEN-BNL Research Center (RBRC)--has published a new calculation relevant to the search for an explanation of the predominance of matter over antimatter in our universe.

High-speed cameras can take pictures in quick succession. This makes them useful for visualizing ultrafast dynamic phenomena, such as femtosecond laser ablation for precise machining and manufacturing processes, fast ignition for nuclear fusion energy systems, shock-wave interactions in living cells, and certain chemical reactions.

New Orleans, LA - A team of researchers from LSU Health New Orleans Neuroscience Center of Excellence and the University of Copenhagen provides the first evidence that patients with ocular hypertension may exhibit superior antioxidant protection that promotes resistance to the elevated intraocular pressure associated with glaucoma. Their findings are published online in the Journal of Clinical Medicine, available here.

AMHERST, Mass. - Artificial intelligence (AI) experts at the University of Massachusetts Amherst and the Baylor College of Medicine report that they have successfully addressed what they call a "major, long-standing obstacle to increasing AI capabilities" by drawing inspiration from a human brain memory mechanism known as "replay."

Researchers at the National Institute of Standards and Technology (NIST) have developed a new tool called the Phish Scale that could help organizations better train their employees to avoid a particularly dangerous form of cyberattack known as phishing.

By 2021, global cybercrime damages will cost $6 trillion annually, up from $3 trillion in 2015, according to estimates from the 2020 Official Annual Cybercrime Report by Cybersecurity Ventures.

Artificial light accounts for approximately 20% of the total electricity consumed globally. Considering the present environmental crisis, this makes the discovery of energy-efficient light-emitting materials particularly important, especially those that produce white light. Over the last decade, technological advances in solid-state lighting, the subfield of semiconductors research concerned with light-emitting compounds, has led to the widespread use of white LEDs.

Understanding the specific mutations that contribute to different forms of cancer is critical to improving diagnosis and treatment. But limitations in DNA sequencing technology make it difficult to detect some major mutations often linked to cancer, such as the loss or duplication of parts of chromosomes.

Now, methods developed by Princeton computer scientists will allow researchers to more accurately identify these mutations in cancerous tissue, yielding a clearer picture of the evolution and spread of tumors than was previously possible.