Earth

Quantum physics is moving out of the laboratory and into our everyday lives. Despite the big headline results about quantum computers solving problems impossible for classical computers, technical challenges are standing in the way of getting quantum physics into the real world. New research published in Nature Communications from teams at Aalto University and Lund University hopes to provide an important tool in this quest.

Who wins in a competition is largely dependent on the opponent faced, yet the role of the environment in which the battle takes place should not be underestimated either. In sports, some skiers profit from icy over snowy grounds and some tennis players are weaker on sand than on grass. Similarly, within our bodies, the immune system sets the environment for the competition between multiple pathogens that infect us at the same time.

Go ahead, take a big bite.

Hard plant foods may have made up a larger part of early human ancestors' diet than currently presumed, according to a new experimental study of modern tooth enamel from Washington University in St. Louis.

Imagine taking a hike through a forest or a stroll through a zoo and not a sound fills the air, other than the occasional chirp from a cricket. No birds singing, no tigers roaring, no monkeys chattering, and no human voices, either. Acoustic communication among vertebrate animals is such a familiar experience that it seems impossible to imagine a world shrouded in silence.

Sand crabs, a key species in beach ecosystems, were found to have increased adult mortality and decreased reproductive success when exposed to plastic microfibers, according to a new Portland State University study.

The U.N. and other international organizations agree that forest restoration is a critical part of the collective global effort to combat climate change, reduce extinctions, and improve the lives of people in rural communities. Dozens of nations have pledged to restore 230 million hectares of forest so far as part of projects such as the Bonn Challenge and REDD+. The Bonn Challenge goal is to restore 350 million hectares by 2030.

The human-caused biodiversity decline started much earlier than researchers used to believe. According to a new study published in the scientific journal Ecology Letters the process was not started by our own species but by some of our ancestors.

The work was done by an international team of scientists from Sweden, Switzerland and the United Kingdom.

The researchers point out in the study that the ongoing biological diversity crisis is not a new phenomenon, but represents an acceleration of a process that human ancestors began millions of years ago.

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

It is an awkward idea, but a couple's ability to have kids may partly depend on who else is present. The reproductive tracts of males and females contain whole communities of micro-organisms. These microbes can have considerable impact on (animal) fertility and reproduction, as shown by Melissah Rowe, from the Netherlands Institute of Ecology (NIOO-KNAW), and co-authors this week with an extensive overview in Trends in Ecology & Evolution. It may even lead to new species.

World leaders are currently updating the laws for international waters that apply to most of the world's ocean environment. This provides a unique opportunity, marine scientists argue this week, to introduce new techniques that allow protected zones to shift as species move under climate change.

In an article in the Jan. 17 issue of Science, researchers make the case for the United Nations to include mobile marine protected areas in the U.N. Convention on the Law of the Sea, or UNCLOS, now being updated since its last signing in 1982.

Birds fly in a meticulous manner not yet replicable by human-made machines, though two new studies in Science Robotics and Science - by uncovering more about what gives birds this unparalleled control - pave the way to flying robots that can maneuver the air as nimbly as birds. Roboticists have tried to replicate feathery fliers for almost two decades, but these efforts have been hindered by use of rigid feather-like panels and a lack of understanding of the skeletal and muscular mechanics behind birds' highly morphable wings. In Science Robotics, Eric Chang et al.

Dragonflies and damselflies are animals that may appear gentle but are, in fact, ancient hunters. The closely related insects shared an ancestor over 250 million years ago -- long before dinosaurs -- and provide a glimpse into how an ancient neural system controlled precise and swift aerial assaults.

The new study, led by scientists from the universities of Bristol and Essex and published today [16 January] in Current Biology, challenge the established view of the origin of plants on land, and reveal that compared to the origin of animals, plants are better at inventing new genes during periods of evolution.

Plants constitute one of the major lineages of life and are the basis of almost all ecosystems, being an important source of food and oxygen. During evolution, all organisms gain new genes, lose old ones, or simply recycle genes.

The Gouti lab from the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) has developed functional neuromuscular organoids (NMOs) that self-organize into spinal cord neurons and muscle tissue. Together the two cell types form a complex neuronal network that directs muscle tissue to contract. The neuromuscular organoids, described in the journal Cell Stem Cell, represent a breakthrough for the study of human neuromuscular system development and disease.

Photoelectrochemical (PEC) water splitting for hydrogen fuel generation has been considered the Holy Grail of electrochemistry. But to achieve it, many scientists believe the materials have to be abundant and low cost.

The most promising oxide photocathodes are cuprous oxide (Cu2O) photoelectrodes. In 2018 and 2019, researchers at EPFL achieved champion performance with cuprous oxide, rivaling photovoltaic (PV) semiconductor-based photocathodes.