Heavens

EUGENE, Ore. - April 15, 2020 -- When species under a taxonomic umbrella have faced forks in the road, leading to extinction or adaptation, the path taken has been difficult to follow. In a newly published paper, two scientists argue that long-used approaches for reconstructing these paths are deeply flawed.

Since its discovery in 2017, an air of mystery has surrounded the first known interstellar object to visit our solar system, an elongated, cigar-shaped body named 'Oumuamua (Hawaiian for "a messenger from afar arriving first").

How was it formed, and where did it come from? A new study published April 13 in Nature Astronomy offers a first comprehensive answer to these questions.

Nowadays, modern quantum simulators offer a wide range of possibilities to prepare and investigate complex quantum states. They are realized with ultracold atoms in optical lattices, Rydberg atoms, trapped ions or superconducting quantum bits. A particularly fascinating class of quantum states are topological states of matter. David Thouless, Duncan Haldane and Michael Kosterlitz were awarded the Nobel Prize in Physics in 2016 for their theoretical discovery.

An international research team led by the Department of Physics and Astronomy at the University of Turku, Finland, mapped the interstellar magnetic field structure and interstellar matter distribution in the solar neighbourhood. The results of the study have been published in the esteemed European journal Astronomy & Astrophysics (A&A) in March.

Magnetic monopoles were detected for the first time worldwide at the Berlin Neutron Source BER II in 2008. At that time they in a one-dimensional spin system of a dysprosium compound. About 10 years ago, monopole quasi-particles could also be detected in two-dimensional spin-ice systems consisting of tetrahedral crystal units. However, these spin-ice materials were electrical insulators.

Now: Magnetic monopoles in a metal

The upper layers in the atmospheres of gas giants -- Saturn, Jupiter, Uranus and Neptune -- are hot, just like Earth's. But unlike Earth, the Sun is too far from these outer planets to account for the high temperatures. Their heat source has been one of the great mysteries of planetary science.

What do you see in the picture above (Figure 1)? Merely a precisely-drawn three-dimensional picture of nanoparticles? Far more than that, nanotechnologists will say, due to a new study published in the journal Science. Whether a material catalyzes chemical reactions or impedes any molecular response is all about how its atoms are arranged. The ultimate goal of nanotechnology is centered around the ability to design and build materials atom by atom, thus allowing scientists to control their properties in any given scenario.

Researchers at Wits University in Johannesburg, South Africa, have found the answer to an enigma that has had geologists scratching their heads for years.

The question is that of how certain magmatic rocks that are formed through crystallisation in magmatic chambers in the Earth's crust, defy the norm, and contain minerals in random proportions.

Normally, magmatic rocks consist of some fixed proportions of various minerals. Geologists know, for instance, that a certain rock will have 90% of one mineral and 10% of another mineral.

The species Australopithecus afarensis inhabited East Africa more than three million years ago, and occupies a key position in the hominin family tree, as it is widely accepted to be ancestral to all later hominins, including the human lineage. "Lucy and her kind provide important evidence about early hominin behavior.

A new study led by the University of Kent has found evidence that human ancestors as recent as two million years ago may have regularly climbed trees.

A long-held mystery in the field of nuclear physics is why the universe is composed of the specific materials we see around us. In other words, why is it made of “this” stuff and not other stuff?

Specifically of interest are the physical processes responsible for producing heavy elements — like gold, platinum and uranium — that are thought to happen during neutron star mergers and explosive stellar events.

An unidentified X-ray signature recently observed in nearby galaxies and galaxy clusters is not due to decay of dark matter, researchers report. The findings rule out previously proposed interpretations of dark matter particle physics. Dark matter (DM) constitutes more than 80% of the matter in the Universe and its gravitational pull is responsible for binding galaxies and galaxy clusters together.

A study published in Journal of Human Evolution reveals for the first time the diet of the fossil baboon Theropithecus oswaldi found in Cueva Victoria in Cartagena (Murcia, Spain), the only site in Europe with remains of this primate whose origins date back to four million years ago in eastern Africa.

Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer. While nitrogen fertilizer benefits crop growth, it has negative effects on the environment and climate, as it requires a great amount of energy to produce. Many scientists are seeking ways to develop more sustainable practices that maintain high crop yields with reduced inputs.

When an egg cell of almost any sexually reproducing species is fertilized, it sets off a series of waves that ripple across the egg's surface. These waves are produced by billions of activated proteins that surge through the egg's membrane like streams of tiny burrowing sentinels, signaling the egg to start dividing, folding, and dividing again, to form the first cellular seeds of an organism.