Heavens

The hypothesis that the Solar System was born from a gigantic cloud of gas and dust was first floated in the second half of the eighteenth century. It was proposed by German philosopher Immanuel Kant and developed by French mathematician Pierre-Simon de Laplace. It is now a consensus among astronomers. Thanks to the enormous amount of observational data, theoretical input and computational resources now available, it has been continually refined, but this is not a linear process.

Patrick Huber, a professor in the Virginia Tech Department of Physics, has co-authored an article that describes the potential uses and limitations of antineutrino detectors for nuclear security applications related to reactor, spent fuel, and explosion monitoring.

Genetically modified (GM) Bt cotton produces its own insecticide. The seeds were introduced in India in 2002 and today account for 90% of all cotton planting in the country. Bt cotton is now the most widely planted GM crop on small farms in the developing world.

MADISON, Wis. - University of Wisconsin-Madison researchers have identified a new way that common Aspergillus molds can induce asthma, by first attacking the protective tissue barrier deep in the lungs.

In both mice and humans, an especially strong response to this initial damage was associated with developing an overreaction to future mold exposure and the constricted airways characteristic of asthma.

A computational approach inspired by the growth patterns of a bright yellow slime mold has enabled a team of astronomers and computer scientists at UC Santa Cruz to trace the filaments of the cosmic web that connects galaxies throughout the universe.

Their results, published March 10 in Astrophysical Journal Letters, provide the first conclusive association between the diffuse gas in the space between galaxies and the large-scale structure of the cosmic web predicted by cosmological theory.

UPTON, NY--New results from precision particle detectors at the Relativistic Heavy Ion Collider (RHIC) offer a fresh glimpse of the particle interactions that take place in the cores of neutron stars and give nuclear physicists a new way to search for violations of fundamental symmetries in the universe. The results, just published in Nature Physics, could only be obtained at a powerful ion collider such as RHIC, a U.S.

In their interiors, stars are structured in a layered, onion-like fashion. In those with solar-like temperatures, the core is followed by the radiation zone. There, the heat from within is led outwards by means of radiation. As the stellar plasma becomes cooler farther outside, heat transport is dominated by plasma flows: hot plasma from within rises to the surface, cools, and sinks down again. This process is called convection. At the same time, the star's rotation, which depends on stellar latitude, introduces shear movements.

Numerical simulations showed that the temperature gradient in the disk of gas around a young gas giant planet could play a critical role in the development of a satellite system dominated by a single large moon, similar to Titan around Saturn. Researchers found that dust in the circumplanetary disk can create a "safety zone," which keeps the moon from falling into the planet as the system evolves.

An international team of astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) has captured the very moment when an old star first starts to alter its environment. The star has ejected high-speed bipolar gas jets which are now colliding with the surrounding material; the age of the observed jet is estimated to be less than 60 years. These features help scientists understand how the complex shapes of planetary nebulae are formed.

Monash University researchers have revealed a novel therapy that corrects the mechanism in the body that's gone wrong in Postural Orthostatic Tachycardia Syndrome (POTS), the condition affecting the former lead singer of The Wiggles.

Central Clinical School (CCS) researchers led by Professor Sam El-Osta found how genes that protect against POTS become silent or 'switched off' - and identified a drug to switch them on again.

Betelgeuse has been the center of significant media attention lately. The red supergiant is nearing the end of its life, and when a star over 10 times the mass of the Sun dies, it goes out in spectacular fashion. With its brightness recently dipping to the lowest point in the last hundred years, many space enthusiasts are excited that Betelgeuse may soon go supernova, exploding in a dazzling display that could be visible even in daylight.

Researchers at the Paul Scherrer Institute PSI have measured a property of the neutron more precisely than ever before. In the process they found out that the elementary particle has a significantly smaller electric dipole moment than was previously assumed. With that, it has also become less likely that this dipole moment can help to explain the origin of all matter in the universe. The researchers achieved this result using the ultracold neutron source at PSI. They report their results today in the journal Physical Review Letters.

Knots are all around us: in computer cables, headphones and wires. But, although they can be a nuisance, they're also very useful when it comes to tying up your laces or when you go sailing. In maths, there are no less than six billion different potential knots, but what about knots in chemistry? Since the 1970s, scientists have been trying to knot molecules together to create new, custom-made mechanical properties, which will give rise to new materials. The first successes took place twenty years later but the process remains laborious.

Most ordinary matter is held together by an invisible subatomic glue known as the strong nuclear force -- one of the four fundamental forces in nature, along with gravity, electromagnetism, and the weak force. The strong nuclear force is responsible for the push and pull between protons and neutrons in an atom's nucleus, which keeps an atom from collapsing in on itself.

The SEIS seismometer from NASA's InSight mission measured a total of 174 probable 'Mars quakes' in the first months since its launch at the end of February 2019. That is slightly more than one quake every two days. These data provide the first comprehensive proof that - besides the Earth and the Moon - Mars is also seismically active.