Heavens
When stars explode as supernovas, they produce shock waves in the plasma surrounding them. So powerful are these shock waves, they can act as particle accelerators that blast streams of particles, called cosmic rays, out into the universe at nearly the speed of light. Yet how exactly they do that has remained something of a mystery.
A type of plant grafting needing a tremendous amount of precision and skill has now been made faster and easier thanks to a simple transparent container. Researchers at Nagoya University have developed a micrografting device that guides seedling growth and facilitates the grafting of the embryonic shoots of one plant onto the tiny stalks of another. The new device shows potential for facilitating research into plant signalling. The details were published in The Plant Journal. The concept can be expanded to crop grafting to develop more resilient crop varieties.
Boulder, Colo., USA: Throughout Earth's long history, volcanic super-eruptions have been some of the most extreme events ever to affect our planet's rugged surface. Surprisingly, even though these explosions eject enormous volumes of material--at least 1,000 times more than the 1980 eruption of Mount St. Helens--and have the potential to alter the planet's climate, relatively few have been documented in the geologic record.
A 425-million-year-old millipede fossil from the Scottish island of Kerrera is the world's oldest "bug" -- older than any known fossil of an insect, arachnid or other related creepy-crawly, according to researchers at The University of Texas at Austin.
The findings offer new evidence about the origin and evolution of bugs and plants, suggesting that they evolved much more rapidly than some scientists believe, going from lake-hugging communities to complex forest ecosystems in just 40 million years.
Advancing the use of electrogenetics for remote-controlled medical intervention, researchers report a new device, tested in mouse models of type-1 diabetes, wirelessly coaxed bioengineered cells to release insulin, stabilizing the animals' blood glucose levels within minutes. The approach, which uses external electric fields to trigger on-demand insulin release, opens the door for precisely controlled diabetes therapies.
Scientists from the RIKEN Nishina Center for Accelerator-Based Science and collaborators have shown that knocking out a single proton from a fluorine nucleus--transforming it into a neutron-rich isotope of oxygen--can have a major effect on the state of the nucleus. This work could help to explain a phenomenon known as the oxygen neutron dripline anomaly.
Polish scientists working in Poland, France and USA explained the mysterious β-delayed proton decay of the neutron halo ground state of 11Be. Studies within the SMEC model suggest the existence of collective resonance, carrying many characteristics of a nearby proton-decay channel, which explains this puzzling decay. It was argued that the appearance of such near-threshold resonant states is a generic phenomenon in any open quantum system, in which bound and unbound states strongly mix.
Active galactic nuclei (AGNs) play a major role in galaxy evolution. Astronomers from the University of Groningen and Netherlands Institute for Space Research have now used a record-sized sample of galaxies to confirm that galaxy mergers have a positive effect on igniting AGNs. They were able to compile about ten times more images of merging galaxies than previous studies by using a machine-learning algorithm. The results were published on 27 May in the journal Astronomy & Astrophysics.
Researchers at MIT and elsewhere have combined the power of a super collider with techniques of laser spectroscopy to precisely measure a short-lived radioactive molecule, radium monofluoride, for the first time.
EVANSTON, Ill. -- Move aside, AT2018COW. There is a new astronomical transient in the universe, and it is faster, heavier and brighter at radio wavelengths than its mysterious predecessors.
After astronomers visually spotted a bright burst in a tiny galaxy 500 million lightyears away from Earth in 2016, a Northwestern University-led team has determined that the anomaly is the third fast blue optical transient (FBOT) ever captured in radio- and X-ray wavelengths.
A major roadblock to producing safe, clean and abundant fusion energy on Earth is the lack of detailed understanding of how the hot, charged plasma gas that fuels fusion reactions behaves at the edge of fusion facilities called "tokamaks." Recent breakthroughs by researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have advanced understanding of the behavior of the highly complex plasma edge in doughnut-shaped tokamaks on the road to capturing the fusion energy that powers the sun and stars.
UNIVERSITY PARK, Pa. -- Adding an array of spices to your meal is a surefire way to make it more tasty, but new Penn State research suggests it may increase its health benefits, as well.
In a randomized, controlled feeding study, the researchers found that when participants ate a meal high in fat and carbohydrates with six grams of a spice blend added, the participants had lower inflammation markers compared to when they ate a meal with less or no spices.
In our 13.8 billion-year-old universe, most galaxies like our Milky Way form gradually, reaching their large mass relatively late. But a new discovery made with the Atacama Large Millimeter/submillimeter Array (ALMA) of a massive rotating disk galaxy, seen when the universe was only ten percent of its current age, challenges the traditional models of galaxy formation. This research appears on 20 May 2020 in the journal Nature.
Retina is the only part of the central nervous system (CNS) that can be visualized noninvasively with optical imaging approaches. Direct retinal imaging plays an important role not only in understanding diseased eye and ocular therapeutic discovery, but also study of a variety of well-defined CNS disorders.
ITHACA, N.Y. - After examining a dozen types of suns and a roster of planet surfaces, Cornell University astronomers have developed a practical model - an environmental color "decoder" - to tease out climate clues for potentially habitable exoplanets in galaxies far away.
"We looked at how different planetary surfaces in the habitable zones of distant solar systems could affect the climate on exoplanets," said Jack Madden, who works in the lab of Lisa Kaltenegger, associate professor of astronomy and director of Cornell's Carl Sagan Institute.