Heavens

Thinking small has enabled an international team of scientists to gain new insight into the evolution of planetary building blocks in the early solar system.

The researchers compared the results of small-scale numerical simulations of colliding rock and dust particles to the composition of meteorites. They found that collisions helped transform initially porous materials into the more highly solidified asteroids and meteorites observed today. The team of seven scientists published their evidence last month in Nature Communications.

Fast radio bursts are quick, bright flashes of radio waves from an unknown source in space. They are a mysterious phenomenon that last only a few milliseconds, and until now they have not been observed in real time. An international team of astronomers, including three from the Carnegie Observatories, has for the first time observed a fast radio burst happening live. Their work is published in Monthly Notices of the Royal Astronomical Society.

NASA's Kepler Space Telescope, despite being hobbled by the loss of critical guidance systems, has discovered a star with three planets only slightly larger than Earth. The outermost planet orbits in the "Goldilocks" zone, a region where surface temperatures could be moderate enough for liquid water and perhaps life, to exist.

A study by astrophysicists at the University of Toronto suggests that exoplanets - planets outside our solar system - are more likely to have liquid water and be more habitable than we thought.

"Planets with potential oceans could have a climate that is much more similar to Earth's than previously expected," said Jérémy Leconte, a postdoctoral fellow at the Canadian Institute for Theoretical Astrophysics (CITA) at the University of Toronto, and lead author of a study published today in Science Express.

esearchers at Kavli IPMU and their collaborators have revealed that considering environmental effects such as a gravitational tidal force spread over a scale much larger than a galaxy cluster is indispensable to explain the distribution and evolution of dark matter halos around galaxies. A detailed comparison between theory and simulations made this work possible. The results of this study, which are published in Physical Review D as an Editors' Suggestion, contribute to a better understanding of fundamental physics of the universe.

If you sweep a laser pointer across the Moon fast enough, you can create spots that actually move faster than light, a theoretical curiosity that could practically useful out in the cosmos.

In an interstellar race against time, astronomers have measured the space-time warp in the gravity of a binary star and determined the mass of a neutron star--just before it vanished from view.

The international team, including University of British Columbia astronomer Ingrid Stairs, measured the masses of both stars in binary pulsar system J1906. The pulsar spins and emits a lighthouse-like beam of radio waves every 144 milliseconds. It orbits its companion star in a little under four hours.

Some of the stars appear to be missing in this intriguing new ESO image. But the black gap in this glitteringly beautiful starfield is not really a gap, but rather a region of space clogged with gas and dust. This dark cloud is called LDN 483 -- for Lynds Dark Nebula 483. Such clouds are the birthplaces of future stars. The Wide Field Imager, an instrument mounted on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile, captured this image of LDN 483 and its surroundings.

Astronomers announced today that they have found eight new planets in the "Goldilocks" zone of their stars, orbiting at a distance where liquid water can exist on the planet's surface. This doubles the number of small planets (less than twice the diameter of Earth) believed to be in the habitable zone of their parent stars. Among these eight, the team identified two that are the most similar to Earth of any known exoplanets to date.

A recently study presents a method by which the age of stars can be determined very precisely: "Gyrochronology", an analytical procedure for determining the ages of stars with knowledge of their masses and rotation periods. The word "Gyrochronology" is a neologism of the AIP scientist and co-author of the study, Sydney Barnes.

For decades, astronomers have predicted the formation of galaxies using computer simulations, but with limited success. The galaxies that formed in previous simulations were often too massive, too small, too old and too spherical - nothing like actual galaxies.

An international team has developed a simulation of the universe in which realistic galaxies are created; their mass, size and age are similar to those of observed galaxies. Their similarity is caused by the simulation of strong galactic winds - gas winds that are blown from galaxies.

Severe weather in the form of tornadoes is not something people expect on Christmas week but a storm system on Dec. 23rd brought tornadoes to Mississippi, Georgia and Louisiana. NASA's RapidScat, which flies aboard the International Space Station, captured data on winds while NOAA's GOES satellite tracked the movement of the system. In addition, an animation of images from NOAA's GOES-East satellite showed the movement of those storms and other weather systems from Canada to South America from Dec. 21st to 24th.

A new analysis of a Martian rock that meteorite hunters plucked from an Antarctic ice field 30 years ago this month reveals a record of the planet's climate billions of years ago, back when water likely washed across its surface and any life that ever formed there might have emerged.

Scientists from the University of California, San Diego, NASA and the Smithsonian Institution report detailed measurements of minerals within the meteorite in the early online edition of the Proceedings of the National Academy of Sciences this week.

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel.

In a recent study from Lund University in Sweden, researchers have used new technology to study extremely fast processes in solar cells. The research results form a concrete step towards more efficient solar cells.

The upper limit for the efficiency of normal solar cells is around 33 per cent. However, researchers now see a possibility to raise that limit to over 40 per cent, thereby significantly improving the potential of this energy source.