Heavens

After an explosive device on the Hayabusa2 spacecraft fired a copper cannonball a bit larger than a tennis ball into the near-Earth asteroid Ryugu, creating an artificial impact crater on it, researchers understand more about the asteroid's age and composition, they say. The results may inform efforts to make surface age estimations of other rubble-pile asteroids. When Hayabusa2 launched an orbital bombardment upon the tiny world of Ryugu - a rocky, nearby asteroid orbiting between Earth and Mars - it was to expose the pristine subsurface material for remote sensing and sampling.

The heliosphere is a vast region, extending more than twice as far as Pluto. It casts a magnetic "force field" around all the planets, deflecting charged particles that would otherwise muscle into the solar system and even tear through DNA. However, the heliosphere, despite its name, is not actually a sphere. Space physicists have long compared its shape to a comet, with a round "nose" on one side and a long tail extending in the opposite direction.

Using the unique capabilities of NASA's Hubble Space Telescope, a team of astronomers led by Virginia Tech's Nahum Arav has discovered the most energetic outflows ever witnessed in the universe.

Last April, the Event Horizon Telescope (EHT) sparked international excitement when it unveiled the first image of a black hole. Today, a team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.

This scene of stellar creation, captured by the NASA/ESA Hubble Space Telescope, sits near the outskirts of the famous Tarantula Nebula. This cloud of gas and dust, as well as the many young and massive stars surrounding it, is the perfect laboratory to study the origin of massive stars.

Scientists from the University of Sheffield have discovered a pulsating ancient star in a double star system, which will allow them to access important information on the history of how stars like our Sun evolve and eventually die.

The discovery of the first ever pulsating white dwarf star in an eclipsing binary by physicists at Sheffield means the team can see how binary evolution has affected the internal structure of a white dwarf in detail for the first time.

Spiral structure is seen in a variety of natural objects, ranging from plants and animals to tropical cyclones and galaxies. Now researchers at the North Carolina Museum of Natural Sciences have developed a technique to accurately measure the winding arms of spiral galaxies that is so easy, virtually anyone can participate. This new and simple method is currently being applied in a citizen science project, called Spiral Graph, that takes advantage of a person's innate ability to recognize patterns, and ultimately could provide researchers with some insight into how galaxies evolve.

Substantial amounts of ammonium salts have been identified in the surface material of the comet 67P/Churyumov-Gerasimenko, researchers report, likely revealing the reservoir of nitrogen that was previously thought to be "missing" in comets. The chemical and isotopic composition of the Sun is thought to reflect that of the solar nebula from which it was born. Comets, which are thought to have condensed long ago in the cold outer reaches of the solar nebula, far from the heat of the forming Sun, should contain the same primordial material.

Researchers using ESO's Very Large Telescope (VLT) have observed an extreme planet where they suspect it rains iron. The ultra-hot giant exoplanet has a day side where temperatures climb above 2400 degrees Celsius, high enough to vaporise metals. Strong winds carry iron vapour to the cooler night side where it condenses into iron droplets.

This exoplanet, 390 light years away towards the constellation Pisces, has days when its surface temperatures exceed 2,400 Celsius, sufficiently hot to evaporate metals. Its nights, with strong winds, cool down the iron vapour so that it condenses into drops of iron. This is the first result with the high resolution spectrograph ESPRESSO, an instrument co-directed by the IAC and installed on teh Very Large Telescope (VLT) of ESO, in Chile.

A computational approach inspired by the growth patterns of a bright yellow slime mold has enabled a team of astronomers and computer scientists at UC Santa Cruz to trace the filaments of the cosmic web that connects galaxies throughout the universe.

Their results, published March 10 in Astrophysical Journal Letters, provide the first conclusive association between the diffuse gas in the space between galaxies and the large-scale structure of the cosmic web predicted by cosmological theory.

Scientists at The University of New Mexico have found that the Earth and Moon have distinct oxygen compositions and are not identical in oxygen as previously thought according to a new study released today in Nature Geoscience.

The paper, titled Distinct oxygen isotope compositions of the Earth and Moon, may challenge the current understanding of the formation of the Moon.

The finding was by chance, when the scientists were working on the results from the first light of one of the four telescopes of the project, in Chile. Shortly after the building of the first SECULOOS telescopes, and during the test observations, the team pointed at a well kown brown dwarf 2MASSW J1510478-281817, since renamed 2M1510, in the constellation of Libra. The observations of SPECULOOS picked up an unusual signal which made the researchers suggest that 2M1510 could be two brown dwarfs instead of one, and in orbit around each other.

Billions of lightyears away, gigantic clouds of hydrogen gas produce a special kind of radiation, a type of ultraviolet light known as Lyman-alpha emissions. The enormous clouds emitting the light are Lyman-alpha blobs (LABs). LABs are several times larger than our Milky Way galaxy, yet were only discovered 20 years ago. An extremely powerful energy source is necessary to produce this radiation--think the energy output equivalent of billions of our sun--but scientists debate what that energy source could be.

Astronomers working on 'first light' results from a newly commissioned telescope in Chile made a chance discovery that led to the identification of a rare eclipsing binary brown dwarf system.