Tech

An international team led by researchers at Princeton University has directly observed a surprising quantum effect in a high-temperature iron-containing superconductor.

Superconductors conduct electricity without resistance, making them valuable for long-distance electricity transmission and many other energy-saving applications. Conventional superconductors operate only at extremely low temperatures, but certain iron-based materials discovered roughly a decade ago can superconduct at relatively high temperatures and have drawn the attention of researchers.

MIT researchers have improved on a transparent, conductive coating material, producing a tenfold gain in its electrical conductivity. When incorporated into a type of high-efficiency solar cell, the material increased the cell's efficiency and stability.

The new findings are reported in the journal Science Advances, in a paper by MIT postdoc Meysam Heydari Gharahcheshmeh, professors Karen Gleason and Jing Kong, and three others.

A toxic pollutant produced by burning fossil fuels can be captured from the exhaust gas stream and converted into useful industrial chemicals using only water and air thanks to a new advanced material developed by an international team of scientists.

The growing demands on the high-performance energy-storage system for emerging technologies such as electric vehicles and artificial intelligence drive the development of high-performance batteries. As a promising candidate of next-generation batteries, Li-S batteries have been drawn much attention carrying a high specific capacity (1675 mAh g-1) and energy density (2600 Wh kg-1). However, the diffusion of polysulfide in electrolyte cause changes in the structure of the sulfur cathode during discharge-charge cycles, which greatly limits the commercial applications of Li-S batteries.

In recent years, rechargeable magnesium batteries (RMBs) have attracted a growing number of researchers in the field of electrochemical energy storage systems due to several inherent strengths. First of all, Mg metal possesses higher abundance in earth crust and volumetric capacity (3833 mAh cm-3) compared with metallic lithium. More importantly, air/moisture stability and dendrite-free morphology upon cycling can provide considerable merits over the reviving lithium metal batteries (LMBs) for large-scale energy storage systems and electric vehicles.

Singapore, 23 November 2019 - The trastuzumab biosimilar HLX02 achieved similar overall response rate to reference trastuzumab in women with human epidermal growth factor receptor 2-positive (HER2+) recurrent or previously untreated metastatic breast cancer, according to a large, randomised phase III study reported at the ESMO Asia 2019 Congress. (1)

Smaller, faster, more energy-efficient - this is the goal that developers of electronic devices have been working towards for years. In order to be able to miniaturize individual components of mobile phones or computers for example, magnetic waves are currently regarded as promising alternatives to conventional data transmission functioning by means of electric currents.

Singapore, 23 November 2019 - Combination therapy with the PD-L1 inhibitor atezolizumab and the VEGF inhibitor bevacizumab significantly improves overall survival and progression-free survival in patients with unresectable hepatocellular carcinoma (HCC) compared to standard of care, showed results from a phase 3 study reported at the ESMO Asia 2019 Congress. (1,2)

A dying star emits intense flashes of light called a gamma-ray burst. Most days, the Fermi gamma-ray space telescope detects these flashes. About 20 years ago, scientists predicted that a gargantuan energy level - tera-electron volts - would be detected in burst afterglow.

In January, the MAGIC telescopes on the Canary Islands observed light at this energy level for the first time. The theories predicting how such light would be produced, are now validated.

Burst mechanics

A research collaboration between Rice University and the Energy Safety Research Institute (ESRI) at Swansea University has found that old newspapers can be used as a low cost, eco-friendly material on which to grow single walled carbon nanotubes on a large scale.

Carbon nanotubes are tiny molecules with incredible physical properties that can be used in a huge range of things, such as conductive films for touchscreen displays, flexible electronics, fabrics that create energy and antennas for 5G networks.

(Boston)--Researchers have identified a potential new signaling pathway that may help further the understanding of blood clot formation in cancer patients and ultimately help prevent this complication from occurring.

The bacteria that form the gut microbiota influence important processes of the human body, such as digestion, nutrient absorption, and defense against pathogens. The same type of relationship is present in most animals, including in the Anhopheles darlingi mosquito, the main vector of malaria in Brazil.

Oksana Zinchenko, Research Fellow at the Institute of Cognitive Neuroscience, HSE University, has conducted meta-analysis of 17 articles to find out which areas of the brain are involved decision-making for rendering social punishment. It would appear that in case of both victims of violations as well as witnesses, punishment decisions activate the brain regions responsible for focusing one's attention, processing information, and responding effectively to social interaction.

Boston, Mass. - Marked by acute temporary confusion, disorientation and/or agitation, postoperative delirium is the most common post-surgical complication in older adults, striking as many as half of adults older than 65 who undergo high-risk procedures such as cardiac surgery or hip replacements. Postoperative delirium is also tightly linked to Alzheimer's disease (AD). Although each can occur independently, Alzheimer's is a leading risk factor for delirium, and an episode of delirium puts patients at increased risk for cognitive decline and Alzheimer's disease.

Mucosal surfaces protect organisms from external stressors and disease. Bacteriophages, viruses that infect bacteria, have been shown to preferentially bind to mucosal surfaces. This has been suggested to provide an extra level of immunity against bacterial infections. Researchers at the University of Jyväskylä, Finland tested this idea using fish, phages (viruses) and a fish-infecting bacteria. Phages were confirmed to bind to the mucosal surface, staying there for days and give protection from subsequent bacterial infection. Research was published in mBio in November 2019.