Tech

ANN ARBOR, Mich.---Under the cold clear waters of Lake Huron, University of Michigan researchers have found a five-and-a-half foot-long, pole-shaped piece of wood that is 8,900 years old. The wood, which is tapered and beveled on one side in a way that looks deliberate, may provide important clues to a mysterious period in North American prehistory.

(SACRAMENTO, Calif.) -- Drawing on X-ray crystallography and experimental data, as well as a software suite for predicting and designing protein structures, a UC Davis School of Medicine researcher has developed an algorithm that predicts what has been impossible to generate in the laboratory: the conformational changes in voltage-gated sodium channels when they are at rest or actively transmitting a signal in muscle and nerve cells.

It's time to stop thinking of solar energy as a boutique source of power, says Joshua Pearce.

Sure, solar only generates about 1 percent of the electricity in the US. But that will change in a few years, says Pearce, an associate professor of electrical engineering and materials science at Michigan Technological University. The ultimate in renewable energy is about to go mainstream.

It's no surprise that humans the world over use more water, by volume, than any other material. But in second place, at over 17 billion tons consumed each year, comes concrete made with Portland cement. Portland cement provides the essential binder for strong, versatile concrete; its basic materials are found in many places around the globe; and, at about $100 a ton, it's relatively cheap. Making it, however, releases massive amounts of carbon dioxide, accounting for more than five percent of the total CO2 emissions from human activity.

ABIKO, JAPAN—The quality of agricultural seedlings is important to crop growth and yield after transplantation. Good quality seedlings exhibit characteristics such as thick stems, thick leaves, dark green leaves, and large white roots. Scientists have long known that plant development and physiology are strongly influenced by the light spectrum, which affects seedling structure. Raising seedlings irradiated with blue light has been shown to increase crop yield after planting because of the high accumulation of phenolic compounds.

COPENHAGEN, DENMARK—Natural products marketed as plant growth enhancers are becoming increasingly sought-after. Many of these products, typically produced by small companies with limited research capabilities, have not been tested in farm trials, nor have claims about product effectiveness been documented by scientific data. Researchers from the University of Copenhagen investigated the growth regulatory effect of Tea Seed Powder (TSP), a saponin-rich waste product from tea seed (Camellia sp.) oil production. The results of research appeared in the HortScience.

DURHAM, N.C. –- Microscopic water droplets jumping from one surface to another may hold the key to a wide array of more energy efficient products, ranging from large solar panels to compact laptop computers.

Duke University engineers have developed a new way of producing thermal diodes to regulate heat by bleeding it away or keeping it in. The method solves several shortcomings of existing devices.

Together with international colleagues, scientists from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have added another important component towards understanding the material graphene; a material that is currently receiving a lot of attention: They have determined the lifetime of electrons in graphene in lower energy ranges. This is of great relevance for the future development of fast electronic and optoelectronic components. The results were published just recently in the online edition of the journal Physical Review Letters (DOI: 10.1103/PhysRevLett.107.237401).

The fundamental resource that drives a quantum computer is entanglement—the connection between two distant particles which Einstein famously called 'spooky action at a distance'. The Bristol researchers have, for the first time, shown that this remarkable phenomenon can be generated, manipulated and measured entirely on a tiny silica chip. They have also used the same chip to measure mixture—an often unwanted effect from the environment, but a phenomenon which can now be controlled and used to characterize quantum circuits, as well as being of fundamental interest to physicists.

Anti-fungal and anti-bacterial additives in house paint are present in dangerous quantities in the Vauchère river basin in the city of Lausanne, says a study to be presented the 9th of December, at the American Geophysical Union (AGU) conference in San Francisco. Chemicals engineered to kill microorganisms, called biocides, are added to exterior paints in order to prevent molding and plant growth.

After the Deepwater Horizon explosion and oil spill in the Gulf of Mexico, the U.S. Department of the Interior asked the National Academy of Engineering and National Research Council to convene a committee of experts to analyze the probable causes of the disaster and identify measures for preventing similar harm in the future.

Cambridge, Mass. -- By studying the behavior of tiny particles at an interface between oil and water, researchers at Harvard have discovered that stabilized emulsions may take longer to reach equilibrium than previously thought.

Much longer, in fact.

"We were looking at what we thought would be a very simple phenomenon, and we found something very strange," says principal investigator Vinothan Manoharan, Associate Professor of Chemical Engineering and Physics at the Harvard School of Engineering and Applied Sciences (SEAS).

Government agencies are considering scores of applications to develop utility-scale solar power installations in the desert Southwest of the United States, but too little is known to judge their likely effects on wildlife, according to an article published in the December 2011 issue of BioScience. Although solar power is often seen as a "green" energy technology, available information suggests a worrisome range of possible impacts.

Scientists examined current knowledge about the potential contributions of bioenergy production from switchgrass to limit greenhouse gas emissions. Their findings, published in GCB Bioenergy, conclude that the use of switchgrass bioenergy can contribute to reducing greenhouse gas emissions but encourage further research to address the significant sources of uncertainty, such as what type of land is converted to switchgrass.