Tech

New research into the potential for sparing land from food production to balance greenhouse gas emissions has shown that emissions from the UK farming industry could be largely offset by 2050. This could be achieved if the UK increased agricultural yields and coupled this with expanding the areas of natural forests and wetlands to match its European neighbours.

Methane is increasing in the atmosphere, but many sources are poorly understood. Lakes at high northern latitudes are such a source. However, this may change with a new study published in Nature Geoscience. By compiling previously reported measurements made at a total of 733 northern water bodies - from small ponds formed by beavers to large lakes formed by permafrost thaw or ice-sheets - researchers are able to more accurately estimate emissions over large scales.

Research performed by U.S. Department of Energy's Ames Laboratory Associate Scientist Durga Paudyal was recently featured on the cover of the November 13, 2015, issue of Physical Review Letters.

In his paper, "Complex Magnetism of Lanthanide Intermetallics and the Role of their Valence Electrons: Ab Initio Theory and Experiment," Paudyal and coauthors used electronic structure theory to explain how a mobile "electronic adhesive" helps localized electrons communicate and interact with one another.

Imagine a new type of tyres whose structure has been designed to have greater adhesion on the road. Quite a timely discussion during the long winter nights. French physicists have now developed a model to study the importance of adhesion in establishing contact between two patterned, yet elastic, surfaces. Nature is full of examples of amazing adjustable adhesion power, like the feet of geckos, covered in multiple hairs of decreasing size.

Fitness trackers like Fitbit, Fuelband, and Jawbone are all the rage and if they help individual people exercise more, great, but right now they are in the placebo world regarding evidence they work any better than anything else overall.

Researchers have developed a way to create ceramics using 3D printing that results in a strong material with little tendency to crack that can be fabricated into complex, curved and porous shapes. Ceramic materials offer many appealing qualities, including high-temperature stability, environmental resistance, and high strength. But unlike polymers and some metals, ceramic particles don't fuse together when heated. Thus, the few 3D printing techniques that have been developed for ceramics have slow production rates and involve additives that increase the material's tendency to crack.

Researchers say that the actions of individual farmers should be considered when studying and modelling strategies of pest control.

Research published in PLOS Computational Biology presents a model to understand the actions of humans and the dynamics of pest populations. The authors demonstrate this by using the example of the European corn borer, a moth whose larval phase is a major pest of maize.

The joint research team of Prof. Yoon Seok Jung (UNIST, School of Energy and Chemical Engineering) and Prof. Seng M. Oh (Seoul National University) discovered a new way to develop all-solid-state lithium batteries without a risk of conflagration or explosion. It is the method of melting the solid electrolyte and coating that melted electrolyte around the electrodes. This research outcome was introduced on Advanced Materials on December 22, 2015.

A fully renewable energy system is achievable and economically viable in Russia and Central Asia in 2030. Researchers from Lappeenranta University of Technology (LUT) modelled a renewable energy system for Russia and Central Asia. Results show that renewable energy is the cheapest option for the continent and can make Russia a very energy competitive region in the future.

Say hello to Nadine, a 'receptionist' at Nanyang Technological University (NTU Singapore). She is friendly, and will greet you back. Next time you meet her, she will remember your name and your previous conversation with her.

She looks almost like a human being, with soft skin and flowing brunette hair. She smiles when greeting you, looks at you in the eye when talking, and can also shake hands with you. And she is a humanoid.

Washington, DC -- California's forests are home to the planet's oldest, tallest and most-massive trees. New research from Carnegie's Greg Asner and his team reveals that up to 58 million large trees in California experienced severe canopy water loss between 2011 and today due to the state's historic drought. Their results are published in Proceedings of the National Academy of Sciences.

A new metamaterial with an unusual refraction of light will speed up computers

A team of scientists from the Moscow Institute of Physics and Technology (MIPT) and the Landau Institute for Theoretical Physics in the Russian Academy of Sciences has proposed a two-dimensional metamaterial composed of silver elements, that refracts light in an unusual way. The research has been published on Nov. 18, 2015 in Optical Material Express. In the future, these structures will be able to be used to develop compact optical devices, as well as to create an 'invisibility cloak.'

In the nanoworld, tiny particles of gold can operate like snow blowers, churning through surface layers of an important class of semiconductors to dig unerringly straight paths. The surprising trenching capability, reported by scientists from the National Institute of Standards and Technology (NIST) and IBM,* is an important addition to the toolkit of nature-supplied 'self-assembly' methods that researchers aim to harness for making useful devices.

AMBLER, PA - In temperate climates the colors and appearance of plants and trees change throughout the year. A study in the October 2015 issue of HortTechnology may help landscape professionals choose colors and designs that better meet consumers' needs. Rob Kuper, from the Department of Landscape Architecture and Horticulture at Temple University, used photographs of landscapes in various seasons to determine peoples' perceptions and preferences for the color complexity of changing natural scenes.

Vultures are poor flappers and need to soar in order to fly, relying on updrafts to gain altitude. Spend enough time watching vultures, though, and you'll notice them wobbling at low altitudes as well as circling high in the air. New research in The Auk: Ornithological Advances shows how vultures use small-scale turbulence to stay aloft even when weather conditions don't favor the formation of thermals. The mechanism and purpose of this behavior, which researchers have dubbed 'contorted soaring,' are explained for the first time in the forthcoming article.