CAMBRIDGE, Mass. --- Humanity started recycling relatively early in its evolution: there are proofs that trash recycling was taking place as early as in the 500 BC. What about light recycling? Consider light bulbs: more than one hundred and thirty years ago Thomas Edison patented the first commercially viable incandescent light bulb, so that "none but the extravagant" would ever "burn tallow candles", paving the way for more than a century of incandescent lighting.

Every day all over the world, researchers work with artificial cell membranes. Despite the fact that they are so widely used, they still hold secrets. Now University of Southern Denmark researchers reveal how beautiful flower formations bloom and wither inside artificial cell membranes.

Artificial cell membranes are some of the most important tools in modern bio-science and they provide us with a better understanding of how cells function and thus help us understand diseases, develop drugs, etc.

A two-stage power management and storage system could dramatically improve the efficiency of triboelectric generators that harvest energy from irregular human motion such as walking, running or finger tapping.

Lithium nickel manganese cobalt oxide, or NMC, is one of the most promising chemistries for better lithium batteries, especially for electric vehicle applications, but scientists have been struggling to get higher capacity out of them. Now researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) have found that using a different method to make the material can offer substantial improvements.

UPTON, NY -- Building a better battery is a delicate balancing act. Increasing the amounts of chemicals whose reactions power the battery can lead to instability. Similarly, smaller particles can improve reactivity but expose more material to degradation. Now a team of scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, Lawrence Berkeley National Laboratory, and SLAC National Accelerator Laboratory say they've found a way to strike a balance--by making a battery cathode with a hierarchical structure where the reactive material is abundant yet protected.

Carbon capture and storage, which is considered by many experts as the only realistic way to dramatically reduce carbon emissions in an affordable way, has fallen out of favour with private and public sector funders. Corporations and governments worldwide, including most recently the UK, are abandoning the same technology they championed just a few years ago.

CHAMPAIGN, Ill. -- Second-generation biofuel crops like the perennial grasses Miscanthus and switchgrass can efficiently meet emission reduction goals without significantly displacing cropland used for food production, according to a new study. Researchers from the University of Illinois and collaborators published their findings in the inaugural edition of the journal Nature Energy. The researchers call it the most comprehensive study on the subject to date.

Stanford researchers have developed the first lithium-ion battery that shuts down before overheating, then restarts immediately when the temperature cools.

The new technology could prevent the kind of fires that have prompted recalls and bans on a wide range of battery-powered devices, from recliners and computers to navigation systems and hoverboards.

Tandem solar cells based on silicon and perovskites have raised high hopes for future high efficiency solar modules. A tandem solar cell works by absorbing the high energy photons (visible light) in a top cell which generates a high voltage, and the lower energy photons (Infra red) in a rear cell, which generates a lower voltage. This increases the theoretical maximum efficiency by about 50% in comparison to a standalone silicon cell.

Adding cesium to perovskite solar cells significantly increases their thermal and photostability, while maintaining high efficiency, a new study demonstrates. Metal halide perovskite photovoltaic cells are appealing because they have the potential to boost the efficiency of commercial silicon photovoltaic cells by 20 to 30%, when placed on top as a second layer.

Researchers at the University of Waterloo have developed a revolutionary system for monitoring vital signs that could lead to improved detection and prevention of some cardiovascular issues, as well as greater independence for older adults.

A chemist at the National Institute of Standards and Technology (NIST) has developed a portable version of his method for recovering trace chemicals such as environmental pollutants and forensic evidence including secret graves and arson fire debris.

From their use in telecommunication to detecting hazardous chemicals, lasers play a major role in our everyday lives. They keep us connected, keep us safe, and allow us to explore the dark corners of the universe.

Now a Northwestern University team has made this ever-important tool even simpler and more versatile by integrating a mid-infrared tunable laser with an on-chip amplifier. This breakthrough allows adjustable wavelength output, modulators, and amplifiers to be held inside a single package.

Cellphones, any parent can attest, play a central role in the lives of college students. Studies show that nearly all college students own a cellphone, and most of those students use text messaging as their main form of communication. Researchers from the University of Notre Dame used the centrality of cellphones in college students' lives to delve deep into students' usage habits and how their social networks affect their everyday lives.

How do you get to know a material that you cannot see?

That is a question that researchers studying nanomaterials--objects with features at the sub-micrometer scales such as quantum dots, nanoparticles and nanotubes--are seeking to answer.