Researchers successfully demonstrated a method to switch a novel material between two different nonvolatile states at very high speeds and with great accuracy. The physical constituents of the device in question are significantly robust against external influences such as magnetic fields. These facts together mean a high-speed and high-capacity memory device could be created. Such a device would also be extremely energy efficient.

Ten years ago, a powerful explosion destroyed an oil rig in the Gulf of Mexico, killing 11 workers and injuring 17 others. Over a span of 87 days, the Deepwater Horizon well released an estimated 168 million gallons of oil and 45 million gallons of natural gas into the ocean, making it the largest accidental marine oil spill in history.

Researchers from Woods Hole Oceanographic Institution (WHOI) quickly mobilized to study the unprecedented oil spill, investigating its effects on the seafloor and deep-sea corals and tracking dispersants used to clean up the spill.

Come harvest time, the cotton fields look like popcorn is literally growing on plants, with fluffy white bolls bursting out of the green pods in every direction. There are 100 million families around the world whose livelihoods depend on cotton production, and the crop's annual economic impact of $500 billion worldwide underscores its value and importance in the fabric of our lives.

The Korea Institute of Science and Technology (KIST, Acting President: Yoon Seok-jin) announced that a research team, led by Dr. Oh Hyung-Suk and Dr. Lee Woong-hee, at the Clean Energy Research Center at KIST, developed a technology to reduce the use of precious metal catalysts at electrodes where oxygen is produced. The use of precious metal catalysts is one of the problems hindering the practical application of artificial photosynthesis technology.

For years, researchers have searched for the working principles of self-assembly that can build a cell (complex biological organism) as well as a crystal (far simpler inorganic material) in the same way.

Now, a team of scientists in Turkey has demonstrated the fundamental principles of a universal self-assembly process acting on a range of materials starting from a few atoms-large quantum dots up to nearly 100 trillion atoms-large human cells. Their method is highlighted in Nature Physics.

TAMPA, Fla. (April 17, 2020) – The short-term acute inflammatory response triggered to mend injured cardiac tissue following a heart attack can lead to weakening of the heart’s pumping function if the inflammation remains active over the long-term. Heart failure associated with this unresolved chronic cardiac inflammation has become a leading cause of death in the U.S. and worldwide, yet little is known about the differences in cardiac repair and safe clearance of inflammation between men and women.

WHAT: An exciting new project that aims to quantify the nursing behavior of humpback whale calves in the Maui breeding grounds.

The project is a collaboration between the University of Hawaiʻi at Mānoa Marine Mammal Research Program, the Goldbogen Lab at Stanford University's Hopkins Marine Station and the Friedlander Lab at University of California, Santa Cruz. 

WHO: UH Mānoa Marine Mammal Research Program Director Lars Bejder, PhD candidates Martin van Aswegen and Will Gough.

The Arctic Ocean in summer will very likely be ice free before 2050, at least temporally. The efficacy of climate-protection measures will determine how often and for how long. These are the results of a new research study involving 21 research institutes from around the world, coordinated by Dirk Notz from the University of Hamburg, Germany.

UNSW medical researchers have achieved unprecedented resolution capabilities in single-molecule microscopy to detect interactions between individual molecules within intact cells.

The 2014 Nobel Prize in Chemistry was awarded for the development of super-resolution fluorescence microscopy technology that afforded microscopists the first molecular view inside cells, a capability that has provided new molecular perspectives on complex biological systems and processes.

In our information society, the synthesis, distribution, and processing of radio and microwave signals are ubiquitous in wireless networks, telecommunications, and radars. The current tendency is to use carriers in higher frequency bands, especially with looming bandwidth bottlenecks due to demands for e.g. 5G and the "Internet of Things". "Microwave photonics", a combination of microwave engineering and optoelectronics, might offer a solution.