Heavens

AMES, Iowa – Using data from NASA's Kepler space telescope, an international team of astronomers has discovered a distant planetary system featuring multiple planets orbiting at a severe tilt to their host star.

Such tilted orbits had been found in planetary systems featuring a "hot Jupiter," a giant planet in a close orbit to its host star. But, until now, they hadn't been observed in multiplanetary systems without such a big interloping planet.

An international team of astronomers has found the most distant gravitational lens yet — a galaxy that, as predicted by Albert Einstein's general theory of relativity, deflects and intensifies the light of an even more distant object. The discovery provides a rare opportunity to directly measure the mass of a distant galaxy. But it also poses a mystery: lenses of this kind should be exceedingly rare.

WASHINGTON, DC—Earth's most eminent emissary to Mars has just proven that those rare Martian visitors that sometimes drop in on Earth — a.k.a. Martian meteorites — really are from the Red Planet. A key new measurement of Mars' atmosphere by NASA's Curiosity rover provides the most definitive evidence yet of the origins of Mars meteorites while at the same time providing a way to rule out Martian origins of other meteorites.

Astronomers at Queen's University Belfast have shed new light on the rarest and brightest exploding stars ever discovered in the universe.

The research is published tomorrow (Thursday 17 October) in Nature Magazine – one of the world's most prestigious science publications. It proposes that the most luminous supernovae – exploding stars – are powered by small and incredibly dense neutron stars, with gigantic magnetic fields that spin hundreds of times a second.

Developed to help scientists learn more about the complex nature of celestial objects in the universe, astronomical surveys have been cataloguing the night sky since the beginning of the 20th century. The intermediate Palomar Transient Factory (iPTF)—led by the California Institute of Technology (Caltech)—started searching the skies for certain types of stars and related phenomena in February.

Pasadena, CA—A team of researchers including Carnegie's Mansi Kasliwal and John Mulchaey used a novel astronomical survey software system—the intermediate Palomar Transient Factory (iPTF)—to link a new stripped-envelope supernova, named iPTF13bvn, to the star from which it exploded. The iPTF team also pinpointed the first afterglow of an explosion called a gamma-ray burst that was found by the Fermi satellite. Their work will be published by The Astrophysical Journal Letters in two papers led by Yi Cao and Leo Singer, both of the California Institute of Technology.

Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have uncovered a novel effect that, in principle, offers a means of stabilizing quantum systems against decoherence. The discovery could represent a major step forward for quantum information processing.

There are supermassive black holes -- with masses up to several billion solar masses -- at the hearts of almost all galaxies in the Universe, including our own galaxy, the Milky Way. In the remote past, these bizarre objects were very active, swallowing enormous quantities of matter from their surroundings, shining with dazzling brilliance, and expelling tiny fractions of this matter through extremely powerful jets.

Evaluation of diagnostic studies is often a challenge in diseases that are not defined by a specific test. Assessment of the accuracy of diagnostic tests is essential because they may be used to define who is considered to have a disease and receive treatment for it. However, measuring the accuracy of a diagnostic test requires an accurate gold standard, which defines which patients truly have and do not have the disease. Studies of diseases not defined by a specific test often rely on expert panels to establish the gold standard.

Drs. Michael Hahn and Daniel Wolf Savin, research scientists at Columbia University's Astrophysics Laboratory in New York, NY, found evidence that magnetic waves in a polar coronal hole contain enough energy to heat the corona and moreover that they also deposit most of their energy at sufficiently low heights for the heat to spread throughout the corona. The observations help to answer a 70-year-old solar physics conundrum about the unexplained extreme temperature of the Sun's corona – known as the coronal heating problem.

WASHINGTON, Oct. 15, 2013 – Imagine giving a presentation to a roomful of important customers when suddenly the projector fails. You whip out your smartphone, beam your PowerPoint presentation onto the conference room screen, and are back in business within seconds. This career-saving application and others like it are the promise of a new generation of ultra-small projectors. Now researchers from Japan and Poland have taken an important step toward making such devices more versatile and easier to integrate into portable electronic devices.

Ecologists conducting field research usually study areas that they hope won't be disturbed for a while. But in an article published in the November issue of BioScience, "Mapping the Design Process for Urban Ecology Researchers," Alexander Felson of Yale University and his colleagues describe how ecologists can perform hypothesis-driven research from the start of design through the construction and monitoring phases of major urban projects.

Astrophysicists have found the first evidence of a water-rich rocky planetary body outside our solar system in its shattered remains orbiting a white dwarf.

A new study by scientists at the Universities of Warwick and Cambridge published in the journal Science analysed the dust and debris surrounding the white dwarf star GD61 170 light years away.

Astronomers have found the shattered remains of an asteroid that contained huge amounts of water orbiting an exhausted star, or white dwarf. This suggests that the star GD 61 and its planetary system – located about 150 light years away and at the end of its life – had the potential to contain Earth-like exoplanets, they say.

This is the first time that both water and a rocky surface - two "key ingredients" for habitable planets - have been found together beyond our solar system.

A new method for creating stem cells for the human liver and pancreas, which could enable both cell types to be grown in sufficient quantities for clinical use, has been developed by scientists.

Using the technique, researchers have for the first time been able to grow a pure, self-renewing population of stem cells specific to the human foregut, the upper section of the human digestive system.