When Mount Tambora erupted in 1815, it spewed dust and sulfate aerosols into the stratosphere with a force more powerful than any eruption since. As the aerosols and particulates circulated around the globe, they cooled the planet, disrupting agriculture and leading to what became known as the "year without a summer."
Scientists can read old descriptions of eruptions like Tambora and analyze ash deposits captured in polar ice, but consistently estimating the climate impact of past eruptions has been difficult. A new technique may change that.