Earth

Panama Canal, Pan

New data suggest that the Limon and Pedro Miguel faults in Central Panama have ruptured both independently and in unison over the past 1400 years, indicating a significant seismic risk for Panama City and the Panama Canal, according to research published today by the Bulletin of the Seismological Society of America (BSSA).

10 years of Soufriere Hills Volcano research published

The Soufriere Hills Volcano on Montserrat erupted in 1995, and an international team of researchers has studied this volcano from land and sea since then to understand the workings of andesite volcanos more completely.

A clearer understanding of the Universe, its origins and maybe even its destiny is a significant step closer, thanks to new research.

As part of a major international experiment called ALPHA*, based at CERN in Switzerland, researchers have helped to achieve trapping and holding atoms of 'anti-hydrogen', which has not previously been possible.

Since graphene was first isolated in 2004 with the help of Scotch tape, researchers have excitedly turned to the material to discover its potential applications. A single layer of carbon atoms whose applications range from ultrafast electronics to biosensors to flexible displays, graphene is strong, light, transparent, and a conductor of heat and electricity. But what can we do with this new material?

Approximately 13 million metric tons of rare earth elements (REE) exist within known deposits in the United States, according to the first-ever nationwide estimate of these elements by the U.S. Geological Survey.

This estimate of domestic rare earth deposits is part of a larger report that includes a review of global sources for REE, information on known deposits that might provide domestic sources of REE in the future, and geologic information crucial for studies of the availability of REE to U.S. industry.

Geneva, 17 November 2011. The ALPHA experiment at CERN has taken an important step forward in developing techniques to understand one of the Universe's open questions: is there a difference between matter and antimatter? In a paper published in Nature today, the collaboration shows that it has successfully produced and trapped atoms of antihydrogen. This development opens the path to new ways of making detailed measurements of antihydrogen, which will in turn allow scientists to compare matter and antimatter.

MADISON — Months of volcanic restlessness preceded the eruptions this spring of Icelandic volcano Eyjafjallajökull, providing insight into what roused it from centuries of slumber.

An international team of researchers analyzed geophysical changes in the long-dormant volcano leading up to its eruptions in March and April 2010 that suggest that magma flowing beneath the volcano may have triggered its reawakening. Their study is published in the Nov. 18 issue of the journal Nature.

Antihydrogen trapped for first time

Physicists working at the European Organization for Nuclear Research (CERN) in Geneva, Switzerland, have succeeded in trapping antihydrogen – the antimatter equivalent of the hydrogen atom – a milestone that could soon lead to experiments on a form of matter that disappeared mysteriously shortly after the birth of the universe 14 billion years ago.

Researchers trap antimatter atoms

In the movie Angels and Demons, scientists have solved one of the most perplexing scientific problems: the capture and storage of antimatter. In real life, trapping atomic antimatter has never been accomplished, until now.

Scientists at the University of Cambridge are working on ways to improve the efficiency of the ammonia synthesis process. With between 3-5% of the world's natural gas used to create artificial fertilizers, the new research could have major implications for both the agricultural and energy sectors.

A Princeton scientist with an interdisciplinary bent has taken two well-known problems in mathematics and reformulated them as a physics question, offering new tools to solve challenges relevant to a host of subjects ranging from improving data compression to detecting gravitational waves.