Earth

Using a lump of graphite, a piece of Scotch tape and a silicon wafer, Cornell researchers have created a balloonlike membrane that is just one atom thick -- but strong enough to contain gases under several atmospheres of pressure without popping.

And unlike your average party balloon -- or even a thick, sturdy glass container -- the membrane is ultra-strong, leak-proof and impermeable to even nimble helium atoms.

Edmonton— A researcher from the University of Alberta has proposed an experimental electrical heating process to draw oil from largely untapped deposits, which could yield major rewards for oil production and be more environmentally sound than current extractions processes.

EUGENE, Ore. -- Climate has been implicated by a new study as a major driver of wildfires in the last 2,000 years. But human activities, such as land clearance and fire suppression during the industrial era (since 1750) have created large swings in burning, first increasing fires until the late 1800s, and then dramatically reducing burning in the 20th century.

Windhoek/Leipzig. Natural grass fires are evidently more important for the ecology of savannahs than has previously been assumed. This is the finding of a study carried out in Etosha National Park in the north of Namibia. It is the first study to have investigated the complex interplay of the factors fire, competition, moisture and seed availability in relation to a grass species. Periodic fires in semi-arid regions can lead to older tufts of grass disappearing, thereby making room for younger grasses.

Abrupt climate change is a potential menace that hasn't received much attention. That's about to change. Through its Climate Change Prediction Program, the U.S. Department of Energy's Office of Biological and Environmental Research (OBER) recently launched IMPACTS – Investigation of the Magnitudes and Probabilities of Abrupt Climate Transitions – a program led by William Collins of Berkeley Lab's Earth Sciences Division (ESD) that brings together six national laboratories to attack the problem of abrupt climate change, or ACC.

Following independent paths of investigation, two research teams are announcing this month that they have successfully converted sugar-potentially derived from agricultural waste and non-food plants-into gasoline, diesel, jet fuel and a range of other valuable chemicals.

A study published in the September 19 issue of Science shows that an innovative yet contentious fisheries management strategy called "catch shares" can reverse fisheries collapse. Where traditional "open access" fisheries have converted to catch shares, both fishermen and the oceans have benefited.

MADISON — Alternative energy doesn't always mean solar or wind power. In fact, the alternative fuels developed by University of Wisconsin-Madison chemical and biological engineering professor James Dumesic look a lot like the gasoline and diesel fuel used in vehicles today.

That's because the new fuels are identical at the molecular level to their petroleum-based counterparts. The only difference is where they come from.

Scientists at JILA, a joint institute of the National Instituteof Standards and Technology (NIST)and the University of Colorado atBoulder (CU-Boulder), have applied their expertise in ultracold atoms andlasers to produce the first high-density gas of ultracold molecules—twodifferent atoms bonded together—that are both stable and capable of stronginteractions.

The long-sought milestone in physics has potential applications in quantum computing, precisionmeasurement and designer chemistry.

Walnut trees respond to stress by producing significant amounts of a chemical form of aspirin, scientists have discovered.

The finding, by scientists at the National Center for Atmospheric Research (NCAR) in Boulder, Colo., opens up new avenues of research into the behavior of plants and their impacts on air quality, and also has the potential to give farmers an early warning signal about crops that are failing.

A team of scientists from the U.S. Department of Energy's Idaho National Laboratory earlier this month reached a major milestone with the successful production of hydrogen through High-Temperature Electrolysis (HTE).

The milestone was reached when the Integrated Laboratory Scale experiment started producing hydrogen at a rate of 5.6 cubic meters per hour.

The achievement was recognized at a media event in Idaho Falls Sept. 18.

"This is by far the biggest achievement we've had," said Carl Stoots, the experiment's principal investigator.

BOULDER--Plants in a forest respond to stress by producing significant amounts of a chemical form of aspirin, scientists have discovered. The finding, by scientists at the National Center for Atmospheric Research (NCAR), opens up new avenues of research into the behavior of plants and their impacts on air quality, and it also has the potential to give farmers an early warning signal about crops that are failing.

Primary carcinoma of the stomach is almost always adenocarcinoma or signet ring cell carcinoma and there are few reports of choriocarcinoma or neuroendocrine cell carcinoma. We report a patient with adenocarcinoma of the stomach combined with choriocarcinoma and neuroendocrine cell carcinoma. This is the first reported case of gastric cancer with these three pathological features.

RICHLAND, Wash. – Scientists have puzzled for years about why uranium contamination in groundwater continues to exceed drinking water standards in an area located at the south end of the Hanford Site. The Department of Energy wants answers to why the uranium persists.

RENO, Nev. – Sept. 17, 2008 – Plants and soils act like sponges for atmospheric carbon dioxide, but new research finds that one abnormally warm year can suppress the amount of carbon dioxide taken up by some grassland ecosystems for up to two years. The findings, which followed an unprecedented four-year study of sealed, 12-ton containerized grassland plots at DRI is the cover story in this week's issue (September 18) of the journal Nature.