University of Chicago scientists await start-up of Large Hadron Collider

The moment that James Pilcher has been waiting for since 1994 will arrive at 1:30 a.m. CDT on Wednesday, Sept. 10, when the world's largest scientific instrument is scheduled to begin operation.

Pilcher is among six University of Chicago faculty members and more than a dozen research scientists and students, both graduate and undergraduate, who have contributed to the design and construction of the Large Hadron Collider at CERN, the particle physics laboratory in Geneva, Switzerland.

"This year, more than 11 of us will be in residence full-time at CERN, and the rest will be in Chicago," said Pilcher, Professor in Physics. Along with Indiana University, the University of Chicago also houses a computing center that will support LHC data analysis for various Midwestern institutions.

Physicists at Chicago and elsewhere built the particle detector for the ATLAS (A Toroidal LHC ApparatuS) experiment at LHC, with the search for the Higgs boson and supersymmetry in mind. Theoretically speaking, the long-sought Higgs boson is the particle that endows all objects in the universe with mass. Evidence of supersymmetric particles, meanwhile, could provide an understanding of the dark matter, which makes up about a quarter of the mass of the universe.

Pilcher has been involved with ATLAS since 1994, first in its design, then in the search for funding, and finally in its construction and assembly. He served as chair of the experiment's 150-institution collaboration board in 2000 and 2001.

"Now our team is working to get all parts of the detector working together and to be ready to analyze the first data this fall. It's gratifying that we will finally be doing science soon after all these preliminaries," Pilcher wrote via e-mail from Geneva.

LHC scientists and engineers injected the first protons into the accelerator during two weekend sessions in August. During these tests, the proton beam traveled around only part of the collider, which measures approximately 17 miles in circumference.

"On Sept. 10, the plan is to try and take both beams around the full machine," Pilcher said. "Of course, after that, there is still a lot of work and tuning before physics can start."

The preparations remind Mel Shochet, the Elaine M. and Samuel D. Kersten Jr. Distinguished Service Professor in Physics, of the early 1970s, before the accelerator was turned on at Fermi National Accelerator Laboratory. "There is enormous anticipation of finding phenomena never before seen," said Shochet, a member of the ATLAS collaboration.

But the process involves more than pressing the "on" button and making instant discoveries. "Turning on, understanding and optimizing the performance of the accelerator and the detectors will take hard work and time. That effort will pay off in the years ahead as important scientific discoveries are made."

Source: University of Chicago