Iron-doping of the topological insulator Sb2Te3 results in useful electronic and magnetic properties, quantified in a recent FLEET study at the University of Wollongong.
The researchers studied the magneto-transport properties of an iron-doped topological insulator (Fe-Sb2Te3).
After the material is doped via the addition of iron, its electronic structure changes significantly:
multiple response frequencies emerge, in contrast to the single frequency detected for Sb2Te3 in its pure form
carrier density and mobility is reduced.
"This improved understanding of the effects of doping on the topological insulator Sb2Te3 are critical to inform future possible use in low-energy electronics," explains project leader Xiaolin Wang.
BACKGROUND
Topological insulators (TIs) are novel materials that are neither electrical conductors, nor electrical insulators. Instead, a topological insulator is an insulator in its interior, but conducts along its edges (likened to a chocolate block wrapped in aluminium foil).
Topological insulators' unique 'Dirac' surface states are attractive for electronic applications and potentially host a range of fascinating and useful phenomena.
In three-dimensional (3D) topological insulators such as Sb2Te3, the surface electronic structure is entangled with the internal (bulk) electronic structure and, consequently, both aspects need to be understood at the fundamental level.
Unresolved questions concerning the effect of metal doping of Sb2Te3 is related to one of the most fascinating transport properties in topological insulators: the quantum anomalous Hall effect (QAHE).
QAHE describes an effect that was once 'unexpected' (ie, 'anomalous'): quantisation of the transverse 'Hall' resistance, accompanied by a considerable drop in longitudinal resistance.
It's an area of great interest for technologists," explains Xiaolin Wang. "They are interested in using this significant reduction in resistance to significantly reduce the power consumption in electronic devices."
The study of magnetic-doped topological insulators seeks to find the optimal set of dopants, magnetic order, and transport properties in order to:
Achieve a higher (near ambient) QAHE onset temperature
Eliminate unwanted features in the electronic structure introduced by the transition-metal dopant that are detrimental to performance.
THE STUDY
The study Quantum oscillations in iron-doped single crystals of the topological insulator Sb2Te3 was published in Physical Review B in April this year.
This project was led by Prof Xiaolin Wang, who is the theme Leader of ARC Fleet Enabling technology A and the Director of ISEM at the University of Wollongong.
As well as funding by the Australian Research Council, the research benefited from resources of Australia's National Computational Infrastructure (NCI).
NOVEL MATERIALS AT FLEET
The properties of novel materials such as the topological insulator Sb2Te3 are studied at FLEET, an Australian Research Council Centre of Excellence, within the Centre's Enabling technology A.
The Centre for Future Low-Energy Electronics Technologies (FLEET) is a collaboration of over a hundred researchers, seeking to develop ultra-low energy electronics to face the challenge of energy use in computation, which already consumes 8% of global electricity, and is doubling each decade.