Tech

Researchers have reported a new material, pliable enough to be woven into fabric but imbued with sensing capabilities that can serve as an early warning system for injury or illness.

A team of researchers from the University of Minnesota, University of Massachusetts Amherst, University of Delaware, and University of California Santa Barbara have invented oscillating catalyst technology that can accelerate chemical reactions without side reactions or chemical errors. The groundbreaking technology can be incorporated into hundreds of industrial chemical technologies to reduce waste by thousands of tons each year while improving the performance and cost-efficiency of materials production.

Over millennia, civilizations progressed through the Stone, Bronze, and Iron Ages. Now the time has come for quantum materials to change the way we live, thanks in part to research conducted at the Institut National de la Recherche Scientifique (INRS) and McGill University.

Global risk management experts are calling for fire education initiatives to be included in driver safety programs so that drivers are better prepared for an emergency if faced with it on the roads.

The call follows a new research study where researchers from University of South Australia and the National Technical University of Athens assessed fire safety mechanisms of road tunnels, finding that risks to human life could be reduced through greater awareness and education.

An approach for developing light-emitting fabric based on typical ultrasheer pantyhose coated in a thin gold film may enable the development of softer, more wearable luminous clothing, researchers in Canada report March 4 in the journal Matter.

DNA in a cell can normally be compared to spaghetti on one's plate: a large tangle of
strands. To be able to divide DNA neatly between the two daughter cells during cell division,
the cell organises this tangle into tightly packed chromosomes. A protein complex
called condensin has been known to play a key role in this process, but biologists had no
idea exactly how this worked. Until February 2018, when scientists from the Kavli Institute
at Delft University of Technology, together with colleagues from EMBL Heidelberg, showed

The ability of the world's tropical forests to remove carbon from the atmosphere is decreasing, according to a study tracking 300,000 trees over 30 years, published today in Nature.

The global scientific collaboration, led by the University of Leeds, reveals that a feared switch of the world's undisturbed tropical forests from a carbon sink to a carbon source has begun.

Modern society is working closer to the nanoscale than it realises. Breakthroughs and advances in developing and manipulating nanostructures have led to technological progress that not only drives imaging and sensing devices but also makes possible mainstays of modern life such as touch screens and high resolution LED displays.

Many health problems in the developed world stem from the disruption of a delicate metabolic balance between glucose production and energy utilization in the liver. Now Yale scientists report March 4 in the journal Nature that they have discovered the molecular mechanisms that trigger metabolic imbalance between these two distinct but linked processes, a finding with implications for the treatment of diabetes and non-alcoholic fatty liver disease (NAFLD).

Ever since graphene's discovery in 2004, scientists have looked for ways to put this talented, atomically thin 2D material to work. Thinner than a single strand of DNA yet 200 times stronger than steel, graphene is an excellent conductor of electricity and heat, and it can conform to any number of shapes, from an ultrathin 2D sheet, to an electronic circuit.

New microfluidic process is the first that uses yield-stress fluids to create an undisturbed environment for experimentation, observation, and processing of biological and chemical reactions

The process can lead to new formulations for high-potency medicine such as cancer drugs, with improved quality and better results

The new method improves on traditional microfluidics and draws inspiration from embedded 3-D printing of structures inside support materials

A recently published book on some aspects of the ecology of woody introducents in the Murmansk oblast of Russia provides the information on 19 species of plant-damaging insects out of which only 4 species are identified correctly. Dr Mikhail V.

Light is the main source of energy for photosynthesis, it underlies the production process in plants. At the same time, excessive lighting can lead to photodamage of the photosynthetic apparatus and, indirectly, of other structures of the plant cell. In order to avoid such damage, plants have developed a number of protective mechanisms, including the so-called non-photochemical fluorescence quenching.

Heat, dry conditions, and the resulting low flows in rivers and lakes characterized the summer months of 2003, 2015 and 2018 in Europe. Another low flow period is on the cards for the summer of 2020. Researchers from the University of Freiburg, working with the Universities of Trier and Oslo, Norway, have presented a new method which can help scientists tell more precisely how vulnerable rivers are to drought conditions. Their findings are published in the journal Hydrology and Earth System Sciences.

The biggest impacts on the sea life in Swansea Bay, Wales, come from waves and tides rather than human activity, a wide-ranging new study - encompassing over 170 species of fish and other sea life such as crabs, squid and starfish - has revealed.

Combining data on species, human impacts, and wave and tide patterns, the study, by a Swansea University team, provides the most comprehensive picture to date of the factors that drive change in Swansea Bay. It will give planners a better understanding of the Bay and of the potential impacts of new developments on its ecosystem.