Tech

In Japan, puffer fish is considered a delicacy, but the tickle to the taste buds comes with a tickle to the nerves: fugu contains tetrodotoxin, a strong nerve toxin. In low doses, tetrodotoxin is shown in clinical trials to be a replacement for opioids for relieving cancer related pain. In the journal Angewandte Chemie, scientists have introduced a new route for the total synthesis (complete production of a natural product from current materials) of tetrodotoxin.

After five years of experimentation, researchers from the University of Copenhagen have succeeded in crystallising and mapping a novel conformation of LeuT, a bacterial protein that belongs to the same family of proteins as the brain's so-called neurotransmitter transporters.

These transporters are special proteins that sit in the cell membrane. As a kind of vacuum cleaner, they reuptake some of the neurotransmitters that nerve cells release when sending a signal to one another.

A group of Russian scientists have synthesized manganese-zinc ferrite nanoparticles that can potentially be used in cancer treatment. Due to their unique magnetic properties, the particles can serve as deactivators of affected cells while having almost no negative impact on healthy tissues. The results have been published in the Journal of Sol-Gel Science and Technology.

Magnetic materials are an important component of mechatronic devices such as wind power stations, electric motors, sensors and magnetic switch systems. Magnets are usually produced using rare earths and conventional manufacturing methods. A team of researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) has worked together with researchers from the Graz University of Technology, the University of Vienna and the research institution Joanneum Research to produce specially designed magnets using a 3D printer. The results were published in the journal Materials.

One of the big questions in physics and chemistry is, how were the heavy elements from iron to uranium created?  The Argonne Tandem Linac Accelerator System (ATLAS) at the U.S. Department of Energy’s (DOE) Argonne National Laboratory is being upgraded with new capabilities to help find the answer to that question and many others.

Researchers at the Tokyo Medical and Dental University (TMDU), RIKEN, and the University of Tokyo propose an improved method for isolating the qubits in a quantum computer from the external environment, which may help usher in the era of practical quantum computing

Scientists and engineers working at the frontier of nanotechnology face huge challenges. When the position of a single atom in a material may change the fundamental properties of that material, scientists need something in their toolbox to measure how that atom will behave.

A research team led by the University of Leeds, in collaboration with colleagues at the Sorbonne University in Paris, France, have shown for the first time that it is possible to develop a diagnostic technique loosely related to the idea of a tuning fork.

Growing more climbing beans, as opposed to lower-yield bush beans, could help increase food security in sub-Saharan Africa as demand for food increases, climate change becomes more pronounced, and arable land becomes scarcer, according to a new study. Researchers mapped suitable cultivation areas and modeled future scenarios for 14 countries. The results indicate where specialists can target to promote climbing bean cultivation in areas that are highly suitable for the crop and not yet cultivated.

HOUSTON -- (March 5, 2020) -- Diseases often pile on, coinfecting people, animals and other organisms that are already fighting an infection. In one of the first studies of its kind, bioscientists from Rice University and the University of Michigan have shown that interactions between pathogens in individual hosts can predict the severity of multipathogen epidemics.

Microplastics are a growing environmental concern, and the effects of this waste product on coral are highlighted in research published in Chemosphere from an international team of researchers including UConn marine science professor Senjie Lin.

URBANA, Ill. - University of Illinois scientists, with help from members of the Illinois Corn Growers Association, have developed a new, scalable method for estimating crop productivity in real time. The research, published in Remote Sensing of Environment, combines field measurements, a unique in-field camera network, and high-resolution, high-frequency satellite data, providing highly accurate productivity estimates for crops across Illinois and beyond.

The Centers for Disease Control and Prevention receives reports of about 30,000 cases of Lyme disease each year. The real number, according to the agency, is closer to 300,000.

Underreporting affects the ability of public health authorities to assess risk, allocate resources and devise prevention strategies. It also makes early detection very difficult, hampering efforts to treat the condition quickly and effectively.

The future's getting brighter for solar power. Researchers from CU Boulder have created a low-cost solar cell with one of the highest power-conversion efficiencies to date, by layering cells and using a unique combination of elements.

"We took a product that is responsible for a $30 billion a year industry and made it 30% better," said Michael McGehee, a professor in the Department of Chemical and Biological Engineering and co-author of a paper, to be published tomorrow in Science, which describes the technology. "That's a big deal."

A new building about to take shape in Boston's Roxbury area could, its designers hope, herald a new way of building residential structures in cities.

Designed by architects from MIT and the design and construction firm Placetailor, the five-story building's structure will be made from cross-laminated timber (CLT), which eliminates most of the greenhouse-gas emissions associated with standard building materials. It will be assembled on site mostly from factory-built subunits, and it will be so energy-efficient that its net carbon emissions will be essentially zero.

What might homes of the future look like if countries were really committed to meeting global calls for sustainability, such as the recommendations advanced by the Paris Agreement and the U.N.'s 2030 Agenda for Sustainable Development?

Much wider adoption of smart design features and renewable energy for low- to zero-carbon homes is one place to start -- the U.N. estimates households consume 29% of global energy and consequently contribute to 21% of resultant CO2 emissions, which will only rise as global population increases.