Tech
LOWELL, Mass. - A UMass Lowell geologist is among the researchers who have discovered a new type of manmade quasicrystal created by the first test blast of an atomic bomb.
The formation holds promise as a new material that could one day help repair bone, insulate heat or convert heat to electricity, among other uses, according to UMass Lowell Prof. G. Nelson Eby, a member of the university's Environmental, Earth and Atmospheric Sciences Department.
While previous research early in the pandemic suggested that vitamin D cuts the risk of contracting COVID-19, a new study from McGill University finds there is no genetic evidence that the vitamin works as a protective measure against the coronavirus.
"Vitamin D supplementation as a public health measure to improve outcomes is not supported by this study. Most importantly, our results suggest that investment in other therapeutic or preventative avenues should be prioritized for COVID-19 randomized clinical trials," say the authors.
As meat-eating continues to increase around the world, food scientists are focusing on ways to create healthier, better-tasting and more sustainable plant-based protein products that mimic meat, fish, milk, cheese and eggs.
It's no simple task, says renowned food scientist David Julian McClements, University of Massachusetts Amherst Distinguished Professor and lead author of a paper in the new Nature journal, Science of Food, that explores the topic.
There's a lot of interest right now in how different microbiomes—like the one made up of all the bacteria in our guts—could be harnessed to boost human health and cure disease. But Daniel Segrè has set his sights on a much more ambitious vision for how the microbiome could be manipulated for good: "To help sustain our planet, not just our own health."
Washington, DC--A team led by Carnegie's Thomas Shiell and Timothy Strobel developed a new method for synthesizing a novel crystalline form of silicon with a hexagonal structure that could potentially be used to create next-generation electronic and energy devices with enhanced properties that exceed those of the "normal" cubic form of silicon used today.
Their work is published in Physical Review Letters.
Fukuoka, Japan - The global threat of ongoing climate change has one principal cause: carbon that was buried underground in the form of fossil fuels is being removed and released into the atmosphere in the form of carbon dioxide (CO2). One promising approach to addressing this problem is carbon capture and storage: using technology to take CO2 out of the atmosphere to return it underground.
CORVALLIS, Ore. - A study of two methods for reconstructing ancient temperatures has given climate researchers a better understanding of just how cold it was in Antarctica during the last ice age around 20,000 years ago.
Antarctica, the coldest place on Earth today, was even colder during the last ice age. For decades, the leading science suggested ice age temperatures in Antarctica were on average about 9 degrees Celsius cooler than at present.
Almost half of the world's population currently lives in cities and that number is projected to rise significantly in the near future. This rapid urbanization is contributing to increased flood risk due to the growing concentration of people and resources in cities and the clustering of cities along coastlines.
For reasons unknown, Earth's solid-iron inner core is growing faster on one side than the other, and it has been ever since it started to freeze out from molten iron more than half a billion years ago, according to a new study by seismologists at the University of California, Berkeley.
The faster growth under Indonesia's Banda Sea hasn't left the core lopsided. Gravity evenly distributes the new growth -- iron crystals that form as the molten iron cools -- to maintain a spherical inner core that grows in radius by an average of 1 millimeter per year.
In the rapidly growing field of hybrid quantum photonics, the realization of miniaturized, integrated quantum-optical systems with intense light-matter interaction is of great importance for both fundamental and applied research. In particular, the development of methods for reliably generating, controlling, storing and retrieving quantum states with high fidelity through coherent interaction of light and matter opened up a wide field of applications for quantum information and quantum networks. These include, for example, optical switching, quantum memories, and quantum repeaters.
So-called quantum dots are a new class of materials with many applications. Quantum dots are realized by tiny semiconductor crystals with dimensions in the nanometre range. The optical and electrical properties can be controlled through the size of these crystals. As QLEDs, they are already on the market in the latest generations of TV flat screens, where they ensure particularly brilliant and high-resolution colour reproduction.
O-quinone methides have been studied at the Samara Polytech for more than ten years. Vitaly Osyanin, Doctor of Chemistry, Professor of the Department of Organic Chemistry, is in charge of scientific work in this area. The results of the latest research were published in the authoritative Russian journal "Russian Chemical Reviews" (DOI: https://doi.org/10.1070/RCR4971).
Skoltech scientists have studied the hydroxyl defects in LiFePO4, a widely used cathode material in commercial lithium-ion batteries, contributing to the overall understanding of the chemistry of this material. This work will help improve the LiFePO4 manufacturing process to avoid formation of adverse intrinsic structural defects which deteriorate its performance. The paper was published in the journal Inorganic Chemistry.
Viruses can spread not only via droplets or aerosols like the new coronavirus, but in water, too. In fact, some potentially dangerous pathogens of gastrointestinal diseases are water-borne viruses.
To date, such viruses have been removed from water using nanofiltration or reverse osmosis, but at high cost and severe impact on the environment. For example, nanofilters for viruses are made of petroleum-based raw materials, while reverse osmosis requires a relatively large amount of energy.
Environmentally friendly membrane developed
Interactions in the network can lower the critical temperature thresholds beyond which individual tipping elements begin destabilizing on the long-run, according to the study - the risk already increases significantly for warming of 1.5°C to 2°C, hence within the temperature range of the Paris Agreement.