Tech

Researchers from North Carolina State University and Collaborations Pharmaceuticals have created a free-to-use database of 14,000 known macrolactones - large molecules used in drug development - which contains information about the molecular characteristics, chemical diversity and biological activities of this structural class. The database, called MacrolactoneDB, fills a knowledge gap concerning these molecules and could serve as a useful tool for future drug discovery.

QUT researchers have proposed the design of a new carbon nanostructure made from diamond nanothreads that could one day be used for mechanical energy storage, wearable technologies, and biomedical applications.

Dr Haifei Zhan, from the QUT Centre for Materials Science, and his colleagues successfully modelled the mechanical energy storage and release capabilities of a diamond nanothread (DNT) bundle - a collection of ultrathin one-dimensional carbon threads that store energy when twisted or stretched.

A team of researchers from Osaka University, TU Wien, Nanyang Technological University, Rice University, University of Alberta and Southern Illinois University-Carbondale comes closer to unraveling the physics of quasiparticles in carbon nanotubes.

Flexible circuits have become a highly desirable commodity in modern technology, with applications in biotechnology, electronics, monitors and screens, being of particular importance. A new paper authored by John F. Niven, Department of Physics & Astronomy, McMaster University, Hamilton, Ontario, published in EPJ E, aims to understand how materials used in flexible electronics behave under stress and strain, particularly, how they wrinkle and buckle.

Charisma can launch professional success and improve leadership skills. It can make a difference in a debate, make people become the center of attention and even be a factor in winning an election. However, humans do not have the monopoly on this inherent magnetism for triumph studied in so many coaching textbooks. It can also turn into an ally for certain living things in order to make their homes in a new ecosystem. Charismatic species have an easier time.

Children face a worrying threefold increase in air pollution during the daily school runs, causing air quality experts to call for restrictions on the use of cars during those periods.

In a study published by the journal Science of the Total Environment, experts from the University of Surrey's world-renowned Global Centre for Clean Air Research (GCARE) partnered with a local school and the local community in Guildford to investigate the impact cars have on air quality in and around schools during drop-off and pick-up times.

Whether activating or silencing genes, breaking down defective cells or building new tissue, our body is constantly working to repair itself, even in cases of illness. To fight a disease, our body sends out signals, often long before we ourselves notice the disease. Such signals are, for example, DNA molecules that are released from the body's own cells, circulate in the blood and are most likely recognised by other cells as a message to stimulate a defence reaction.

Many materials that we use every day are not sustainable. Some are harmful to plants or animals, others contain rare elements that will not always be as readily available as they are today. A great hope for the future is to achieve different material properties by using novel organic molecules. Organic high-performance materials containing only common elements such as carbon, hydrogen or oxygen could solve our resource problem - but their preparation is usually anything but environmentally friendly.

Cells are often exposed to stressful conditions that can be life threatening, such as high temperatures or toxins. Fortunately, our cells are masters of stress management with a powerful response program: they cease to grow, produce stress-protective factors, and form large structures, which are called stress granules. Scientists at the Biotechnology Center (BIOTEC) of the TU Dresden and the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), together with partners in Heidelberg and St.

COLLEGE PARK, Md. - Lithium ion batteries have already become an integral part of our everyday life. However, our energy-hungry society demands longer life, faster charging, and lighter batteries for a variety of applications from electric vehicles to portable electronics, including lightening the load a soldier carries as numerous electronics become adopted by the Army.

Researchers at the University of Eastern Finland have developed a new hybrid material of mesoporous silicon microparticles and carbon nanotubes that can improve the performance of silicon in Li-ion batteries. Advances in battery technology are essential for sustainable development and for achieving climate neutrality.

Does the domestication syndrome exist? New research reveals that this does not seem to be the case in present-day dogs.

New insight on the conditions that control self-assembly in the protective shell of viruses has been published today in eLife.

The study also highlights the factors that can cause incorrect self-assembly in the viral protein shell, otherwise known as the capsid, preventing viruses from being able to replicate. The findings suggest that manipulating these factors to induce misassembly in viral capsids could be a promising new approach to hindering viral infections.

This year marks the 50th anniversary of the Clean Air Act, which is responsible for dramatic improvements in air quality. Despite this, a new report from the American Lung Association finds nearly half of the nation's population - 150 million people - lived with and breathed polluted air, placing their health and lives at risk. The 21st annual "State of the Air" report finds that climate change continues to make air pollution worse, with many western communities again experiencing record-breaking spikes in particle pollution due to wildfires.

TORONTO, ON - A team of researchers led by scientists at the University of Toronto (U of T) has delayed the onset of amyotrophic lateral sclerosis (ALS) in mice. They are cautiously optimistic that the result, combined with other clinical advances, points to a potential treatment for ALS in humans.

Commonly known as Lou Gehrig's disease, ALS is caused by the degeneration and loss of neurons that control muscles. There is no cure for ALS which currently affects between 2,500 and 3,000 Canadians.