Tech

Neutral atoms—having no net electric charge—usually don’t act very dramatically around a magnetic field. But by “dressing them up” with light, researchers at the Joint Quantum Institute (JQI), a collaborative venture of the National Institute of Standards and Technology (NIST) and the University of Maryland at College Park, have caused ultracold rubidium atoms to undergo a startling transformation. They force neutral atoms to act like pointlike charged particles that can undergo merry-go-round-like “cyclotron” motions just as electrons do when subjected to a suitable magnetic field.

ARGONNE, Ill. (February 25, 2008) — When squeezed, electrons increase their ability to move around. In compounds such as semiconductors and electrical insulators, such squeezing can dramatically change the electrical- and magnetic- properties.

CHESTNUT HILL, MA (February 24, 2009) – An engineered metamaterial proved it can function as a state-of-the-art device in the complex terahertz range of the electromagnetic spectrum, setting a standard of performance for modulating tiny waves of radiation, according to a team of researchers from Boston College, the Los Alamos and Sandia national laboratories, and Boston University.

Scientists from Queen Mary, University of London and the University of Fribourg (Switzerland) have found evidence that magnetism is involved in the mechanism behind high temperature superconductivity.

PITTSBURGH—University of Pittsburgh researchers have created a nanoscale one-stop shop, a single platform for creating electronics at a nearly single-atom scale that could yield advanced forms of such technologically important devices as high-density memory devices and—most importantly—transistors and computer processors. This multitude of uses stems from a technique previously developed by the same team to fashion rewritable nanostructures at the interface between two insulating materials. In the Feb.

NEW BRUNSWICK, N.J. – Physicists at Rutgers University have discovered unusual electronic properties in a material that has potential to improve solar cell efficiency and computer chip design.

The cadherin superfamily has a correlate relationship with the invasion and metastasis of carcinoma. It has been suggested that, unlike E-cadherin, N-cadherin may promote motility and invasion in carcinoma cells. To explore clinical pathological significance of E-cadherin and N-cadherin expressions in esophageal squamous cell carcinoma (ESCC), a research team led by Prof.

CHAMPAIGN, Ill. — A new imaging technique developed by researchers at the University of Illinois overcomes the limit of diffraction and can reveal the atomic structure of a single nanocrystal with a resolution of less than one angstrom (less than one hundredth-millionth of a centimeter).

People debating politics are well-advised to shed more light than heat. Engineers working in optical technologies have the same aspiration.

An international team of scientists led by a Princeton University group recently discovered that on the surface of certain materials collective arrangements of electrons move in ways that mimic the presence of a magnetic field where none is present. The finding represents one of the most exotic macroscopic quantum phenomena in condensed-matter physics: a topological Quantum Spin Hall effect.

STRENGTHENING THE FORENSIC SCIENCE SYSTEM IN THE UNITED STATES: A PATH FORWARD, a new congressionally mandated report from the National Research Council, takes a broad look at the needs of the nation's crime labs and medical examiner system, discusses the scientific status of many forensic methods, and recommends steps policymakers and practitioners should take to improve the U.S. forensic science system. The report will be released at a one-hour public briefing on Wednesday, Feb. 18.

New Haven, Conn. — Yale engineers have created a process that may revolutionize the manufacture of nano-devices from computer memory to biomedical sensors by exploiting a novel type of metal. The material can be molded like plastics to create features at the nano-scale and yet is more durable and stronger than silicon or steel. The work is reported in the February 12 issue of Nature.

Plasmonics -- a possible replacement for current computing approaches -- may pave the way for the next generation of computers that operate faster and store more information than electronically-based systems and are smaller than optically-based systems, according to a Penn State engineer who has developed a plasmonic switch.

Researchers at the National Institute of Standards and Technology (NIST) have discovered that a carefully built magnetic sandwich that interleaves layers of a magnetic alloy with a few nanometers of silver “spacer” has dramatically enhanced sensitivity—a 400-fold improvement in some cases. This material could lead to greatly improved magnetic sensors for a wide range of applications from weapons detection and non-destructive testing to medical devices and high-performance data storage.