Tech

PASADENA, Calif.--Scientists at the California Institute of Technology (Caltech) have trained computers to automatically analyze aggression and courtship in fruit flies, opening the way for researchers to perform large-scale, high-throughput screens for genes that control these innate behaviors. The program allows computers to examine half an hour of video footage of pairs of interacting flies in what is almost real time; characterizing the behavior of a new line of flies "by hand" might take a biologist more than 100 hours.

Physicists at the National Institute of Standards and Technology (NIST) have demonstrated a new ion trap that enables ions to go through an intersection while keeping their cool. Ten million times cooler than in prior similar trips, in fact.

Highlighting another challenge to the development of quantum computers, theorists at the National Institute of Standards and Technology (NIST) have shown* that a type of software operation, proposed as a solution to fundamental problems with the computers’ hardware, will not function as some designers had hoped.

By combining the results of a number of powerful techniques for studying material structure at the nanoscale, a team of researchers from the National Institute of Standards and Technology (NIST), working with colleagues in other federal labs and abroad, believe they have settled a long-standing debate over the source of the unique electronic properties of a material with potentially great importance for wireless communications.

The prairies offer opportunities for capitalizing on environmentally friendly farming practices and potentially useful agricultural waste to produce jobs, economic growth, commercial opportunities, and renewable energy sources, according to a perspective article published in the current issue of the International Journal of Private Law.

Ronald Griffin, Professor of Law at Washburn University, Topeka, Kansas, asks what can leaders do for a desperate and aging population in an environment faced with global warming to re-engage a region that blankets eight states.

ANN ARBOR, Mich.---A new, simpler programming language for wireless sensor networks is designed for easy use by geologists who might use them to monitor volcanoes and biologists who rely on them to understand birds' nesting behaviors, for example. Researchers at the University of Michigan and Northwestern University have written the language with the novice programmer in mind.

Leipzig: Research and industry are increasingly exploiting the potential of aptamers. As well as their application in research, medical diagnosis and treatment, aptamers are also interesting as a basis for biosensors for use in environmental analysis because their characteristics enable them to identify and bind target molecules as surely as a key fits a lock. In a new book, researchers at the Helmholtz Centre for Environmental Research (UFZ) describe the methods used to obtain aptamers.

Researchers at North Carolina State University have found that a tiny aquatic plant can be used to clean up animal waste at industrial hog farms and potentially be part of the answer for the global energy crisis. Their research shows that growing duckweed on hog wastewater can produce five to six times more starch per acre than corn, according to researcher Dr. Jay Cheng. This means that ethanol production using duckweed could be "faster and cheaper than from corn," says fellow researcher Dr. Anne-Marie Stomp.

COLLEGE PARK, MD, April 7, 2009 -- Roughly 20 percent of the electricity consumed worldwide is used to light homes, businesses, and other private and public spaces. Though this consumption represents a large drain on resources, it also presents a tremendous opportunity for savings. Improving the efficiency of commercially available light bulbs -- even a little -- could translate into dramatically lower energy usage if implemented widely.

As science fiction plot lines go, the unintended consequences of yielding tasks too complicated or dangerous for human hands to computers and robots is a popular one. Yet real life scientists are increasingly doing just that, creating automated systems and devices that can not only help collect, organize and analyze scientific data, but that are also able to intelligently and independently draw up new hypotheses and approaches to research based on the data they receive.

Their miniature size is their strength – and also their weakness. Be it in cell phones, cars or computers, electronic components are getting smaller and smaller and increasingly powerful. The smaller they are, the faster they can switch and the less energy they need for each switching operation. However, as energy requirements shrink, so do signal-to-noise ratios.

In a breakthrough for applied physics, North Carolina State University researchers have developed a magnetic semiconductor memory device, using GaMnN thin films, which utilizes both the charge and spin of electrons at room temperature. This is a major breakthrough, as previous devices that used magnetic semiconductors (GaMnAs) and controlled electron spin were only functional at 100 K (or -173 Celsius). By controlling the spin of electrons, the new device represents a significant advance in semiconductor efficiency and speed.

Designing technological devices for religious use may be very different from designing devices for traditional uses in office settings.

"Efficiency and productivity tend to be driving forces when designing technology for offices, but these are not as central when designing applications for the home or religious settings. Why would you design a device that makes someone pray faster?," said Wyche.

Physicians can dramatically reduce the radiation dose delivered to patients undergoing coronary CT angiography in a "triple rule-out" protocol by simply using tube current modulation, according to a study performed at Thomas Jefferson University Hospital in Philadelphia, PA.

Radiologists can now lower the radiation dose delivered by cardiac CT angiography by 39% in adult patients weighing 185 pounds or less, according to a study performed at the University of Erlangen in Erlangen, Germany.