Tech

Quicker microwave meals that use less energy may soon be possible with new ceramic microwave dishes and, according to the material scientists responsible, this same material could help with organic waste remediation.

"Currently, food heated in a microwave loses heat to the cold dish because the dishes are transparent to microwaves," says Sridhar Komarneni, distinguished professor of clay mineralogy, College of Agricultural Sciences at Penn State. "The plates are still cool when the cooking is completed."

PITTSBURGH—The growth of shared Wi-Fi and other wireless computer networks has increased the risk of eavesdropping on Internet communications, but researchers at Carnegie Mellon University's School of Computer Science and College of Engineering have devised a low-cost system that can thwart these "Man-in-the-Middle" (MitM) attacks.

The system, called Perspectives, also can protect against attacks related to a recently disclosed software flaw in the Domain Name System (DNS), the Internet phone book used to route messages between computers.

The semiconductor silicon and the ferromagnet iron are the basis for much of mankind's technology, used in everything from computers to electric motors. In this week's issue of the journal Nature (August 21st) an international group of scientists, including academic and industrial researchers from the UK, USA and Lesotho, report that they have combined these elements with a small amount of another common metal, manganese, to create a new material which is neither a magnet nor an ordinary semiconductor.

ANN ARBOR, Mich.---The fastest quantum computer bit that exploits the main advantage of the qubit over the conventional bit has been demonstrated by researchers at University of Michigan, U.S. Naval Research Laboratory and the University of California at San Diego.

The scientists used lasers to create an initialized quantum state of this solid-state qubit at rates of about a gigahertz, or a billion times per second. They can also use lasers to achieve fundamental steps toward programming it.

Computer scientists at the UC San Diego's Jacobs School of Engineering have proposed a new way to build data centers that could save companies money and deliver more computing capability to end-users.

The proliferation of solar, wind and even tidal electric generation and the rapid emergence of hybrid electric automobiles demands flexible and reliable methods of high-capacity electrical storage. Now a team of Penn State materials scientists is developing ferroelectric polymer-based capacitors that can deliver power more rapidly and are much lighter than conventional batteries.

Researchers from the National Institute of Standards and Technology (NIST) and the Joint Quantum Institute (JQI), a collaborative center of the University of Maryland and NIST, have reported a new way to fine-tune the light coming from quantum dots by manipulating them with pairs of lasers. Their technique, published in Physical Review Letters,* could significantly improve quantum dots as a source of pairs of “entangled” photons, a property with important applications in quantum information technologies.

PHILADELPHIA –- Scientists at the University of Pennsylvania have theorized a way to increase the speed of pulses of light that bound across chains of tiny metal particles to well past the speed of light by altering the particle shape. Application of this theory would use nanosized metal chains as building blocks for novel optoelectronic and optical devices, which would operate at higher frequencies than conventional electronic circuits.

Heads-up study of hair dynamics may lead to better hair-care products.

From frizzy perms to over-bleached waves, "bad hair days" could soon become a less frequent occurrence. Chemists report the first detailed microscopic analysis of what happens to individual hair fibers when they interact with each other, an advance in knowledge key to the development of improved shampoos, conditioners, and other products for repairing damaged hair, the researchers say.

A time-and-money-saving question shared by commuters in their cars and networks sharing ever-changing Internet resources is: "What's the best way to get from here to there?"

A new algorithm developed by computer scientists at the University of California, San Diego helps answer that question, at least for computer networks, and it promises to significantly boost the efficiency of network routing.

This release is also available in German.

An experiment carried out at the Physikalisch-Technische Bundesanstalt (PTB) has realized spin torque switching of a nanomagnet as fast as the fundamental speed limit allows. Using this so-called ballistic switching future non-volatile magnetic memories could operate as fast as the fastest non-volatile memories. The experiments are described in the next issue of Physical Review Letters (22 August, 2008).

AMES, Iowa - John R. Clem, a physicist at the U.S. Department of Energy's Ames Laboratory, has developed a theory that will help build future superconducting alternating-current fault-current limiters for electricity transmission and distribution systems. Clem's work identifies design strategies that can reduce costs and improve efficiency in a bifilar fault-current limiter, a new and promising type of superconducting fault-current limiter.

When you make a new material on a nano scale how can you see what you have made? A team lead by a Biotechnology and Biological Sciences research Council (BBSRC) fellow has made a significant step toward overcoming this major challenge faced by nanotechnology scientists. With new research published today (13 August) in ChemBioChem, the team from the University of Liverpool, The School of Pharmacy (University of London) and the University of Leeds, show that they have developed a technique to examine tiny protein molecules called peptides on the surface of a gold nanoparticle.

SIGGRAPH Los Angeles, CA, August 12, 2008 -- The images of rocks, clouds, marble and other textures that serve as background images and details for 3D video games are often hand painted and thus costly to generate. A breakthrough from a UC San Diego computer science undergraduate now offers video game developers the possibility of high quality yet lightweight images for 3D video games that are generated "on the fly" and are free of stretch marks, flickering and other artifacts.

WORCESTER, Mass. – August 11, 2008 – Anyone who has walked barefoot across a parking lot on a hot summer day knows that blacktop is exceptionally good at soaking up the sun's warmth. Now, a research team at Worcester Polytechnic Institute (WPI) has found a way to use that heat-soaking property for an alternative energy source.

Through asphalt, the researchers are developing a solar collector that could turn roads and parking lots into ubiquitous—and inexpensive–sources of electricity and hot water.