Tech

The world at large runs on lithium ion batteries. New research at Rice University shows that tiny worlds may soon do the same.

The Rice lab of Professor Pulickel Ajayan has packed an entire lithium ion energy storage device into a single nanowire, as reported this month in the American Chemical Society journal Nano Letters. The researchers believe their creation is as small as such devices can possibly get, and could be valuable as a rechargeable power source for new generations of nanoelectronics.

COLLEGE PARK, Md. - Millions of U.S. drivers cross faulty or obsolete bridges every day, highway statistics show, but it's too costly to fix all these spans or adequately monitor their safety, says a University of Maryland researcher who's developed a new, affordable early warning system.

This wireless technology could avert the kind of bridge collapse that killed 13 and injured 145 along Minneapolis' I-35W on Aug. 1, 2007, he says - and do so at one-one-hundredth the cost of current wired systems.

New, York, NY—July 28, 2011—A new study co-authored by Columbia Engineering professor Kartik Chandran and recently published in the journal, Environmental Science & Technology, shows that reducing nitrogen pollution generated by wastewater treatment plants can come with "sizable" economic benefits, as well as the expected benefits for the environment.

Scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and their colleagues have discovered a new relation among electric and magnetic fields and differences in temperature, which may lead to more efficient thermoelectric devices that convert heat into electricity or electricity into heat.

Iraq's large oil-production potential could put it in a position to vie for leadership with Saudi Arabia in the world oil scene in the coming decades. But a new energy study released today by Rice University's Baker Institute for Public Policy finds that in the near term, both Baghdad and Riyadh may have difficulty meeting rising demand for oil.

Engineers at the University of Southampton have designed and flown the world's first 'printed' aircraft, which could revolutionise the economics of aircraft design.

The SULSA (Southampton University Laser Sintered Aircraft) plane is an unmanned air vehicle (UAV) whose entire structure has been printed, including wings, integral control surfaces and access hatches. It was printed on an EOS EOSINT P730 nylon laser sintering machine, which fabricates plastic or metal objects, building up the item layer by layer.

(PHILADELPHIA) -- Social media tools like Facebook, Twitter and Foursquare may be an important key to improving the public health system's ability to prepare for, respond to, and recover from disasters, according to a New England Journal of Medicine "Perspective" article from the Perelman School of Medicine at the University of Pennsylvania to be published this week.

Researchers with the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have created a graphene and tin nanoscale composite material for high-capacity energy storage in renewable lithium ion batteries. By encapsulating tin between sheets of graphene, the researchers constructed a new, lightweight "sandwich" structure that should bolster battery performance.

Washington, D.C.—Geological history has periodically featured giant lava eruptions that coat large swaths of land or ocean floor with basaltic lava, which hardens into rock formations called flood basalt. New research from Matthew Jackson and Richard Carlson proposes that the remnants of six of the largest volcanic events of the past 250 million years contain traces of the ancient Earth's primitive mantle—which existed before the largely differentiated mantle of today—offering clues to the geochemical history of the planet. Their work is published online July 27 by Nature.

Fairbanks, Alaska—In 2007 the largest recorded tundra fire in the circumpolar arctic released approximately as much carbon into the atmosphere as the tundra has stored in the previous 50 years, say scientists in the July 28 issue of the journal Nature. The study of the Anaktuvuk River fire on Alaska's North Slope revealed how rapidly a single tundra fire can offset or reverse a half-century worth of soil-stored carbon.

Why do people behave selfishly and accept that their behaviour may have negative consequences for others? Astrid Matthey and Tobias Regner from the Max Planck Institute of Economics in Jena investigated this question in a laboratory experiment. They found that such behaviour often depends on whether information about the consequences for others can be ignored. Based on their findings, the researchers believe that conclusions can be drawn on, for instance, how the marketing of fair trade products could be improved.

Scientists are reporting development of a new aquatic microrobot that mimics the amazing water-walking abilities of the water strider — the long-legged insect that scoots across the surface of ponds, lakes and other waterways. The bionic microrobot incorporates improvements over previous devices of this kind that position it as a prime candidate for military spy missions, water pollution monitoring, and other applications, the scientists say. Their study appears in the journal, ACS Applied Materials & Interfaces.

Giving amphetamines to adults with Attention Deficit Hyperactivity Disorder (ADHD) can help them control their symptoms, but the side effects mean that some people do not manage to take them for very long. These conclusions were drawn by a team of five researchers working at Girona and Barcelona Universities in Spain, and published in a new Cochrane Systematic Review.

PASADENA, Calif.— While many hotel rooms, recording studios, and even some homes are built with materials to help absorb or reflect sound, mechanisms to truly control the direction of sound waves are still in their infancy. However, researchers at the California Institute of Technology (Caltech) have now created the first tunable acoustic diode-a device that allows acoustic information to travel only in one direction, at controllable frequencies.

The mechanism they developed is outlined in a paper published on July 24 in the journal Nature Materials.

CHAMPAIGN, Ill. — Taking their cue from biological circulatory systems, University of Illinois researchers have developed vascularized structural composites, creating materials that are lightweight and strong with potential for self-healing, self-cooling, metamaterials and more.

"We can make a material now that's truly multifunctional by simply circulating fluids that do different things within the same material system," said Scott White, the Willet Professor of aerospace engineering who led the group. "We have a vascularized structural material that can do almost anything."