Tech

PITTSBURGH -- Like the human body, a digital device often suffers a few bruises and scratches within a lifetime. As in medicine, these injuries can be easily detected and repaired (or healed). At other times, however, a digital device may sustain hard-to-pinpoint nanoscale scratches, which can cause the device as a whole to malfunction.

Los Angeles, CA (January 9, 2012) As LSU and Alabama square off for the national college football championship, even the most rabid Tiger or Tide fan might not realize the influence that the US military had in the widespread appeal of football. According to a new study in the journal Armed Forces & Society (AFS), published by SAGE, college football can credit the military for bringing the sport to the masses. Additionally, the study explores how the impact of World Wars helped bring about issues such as payment of college athletes, which are still being debated.

The available amount of fossil fuels is limited and their combustion in vehicle motors increases atmospheric carbon dioxide levels. The generation of fuels from biomass as an alternative is on the rise. In the journal Angewandte Chemie, Johannes A. Lercher and his team at the Technische Universitaet Muenchen have now introduced a new catalytic process that allows the effective conversion of biopetroleum from microalgae into diesel fuels.

MANHATTAN, KAN. -- A Kansas State University graduate student sees the unpaved road ahead, and it's filled with biomaterial.

Wilson Smith, master's student in civil engineering, Independence, Mo., is working with lignin, a plant-based sustainable material that can be added to improve the quality of unpaved roads throughout Kansas.

More than 70 percent of the 98,000 miles of roads in Kansas are unpaved, Smith said.

Boston, MA – Researchers at Brigham and Women's Hospital (BWH) have successfully tested a controllable endoscopic capsule, inspired by science fiction, that has the ability to "swim" through the body and could provide clinicians with unprecedented control when photographing the inside of the human body.

The capsule is designed to be swallowed like a pill and can be equipped with a camera. Once inside the patient's digestive track, a doctor can "steer" the capsule through the body using an MRI machine, photograph specific areas of interest, and view those pictures wirelessly.

A new study provides the composite picture of the environmental distribution of oil and gas from the 2010 Deepwater Horizon spill in the Gulf of Mexico. It amasses a vast collection of available atmospheric, surface and subsurface chemical data to assemble a "mass balance" of how much oil and gas was released, where it went and the chemical makeup of the compounds that remained in the air, on the surface, and in the deep water.

Every year, Americans drink 13.8 billion gallons of soda, fruit punch, sweet tea, sports drinks, and other sweetened beverages—a mass consumption of sugar that is fueling soaring obesity and diabetes rates in the United States.

Now a group of scientists at the University of California, San Francisco (UCSF), San Francisco General Hospital and Trauma Center (SFGH) and Columbia University have analyzed the effect of a nationwide tax on these sugary drinks.

By combining detailed chemical measurements in the deep ocean, in the oil slick, and in the air, NOAA scientists and academic colleagues have independently estimated how fast gases and oil were leaking during the 2010 Deepwater Horizon oil spill in the Gulf of Mexico.

The new chemistry-based spill rate estimate, an average of 11,130 tons of gas and oil compounds per day, is close to the official average leak rate estimate of about 11,350 tons of gas and oil per day (equal to about 59,200 barrels of liquid oil per day).

ALBANY, Calif. -- An interactive tool developed by researchers from the USDA Forest Service's Pacific Southwest Research Station (PSW) will help wind energy facility operators make informed decisions on efficient ways to reduce impacts on migratory bats.

Research by UT Dallas engineers could lead to more-efficient cooling of electronics, producing quieter and longer-lasting computers, and cellphones and other devices.

Much of modern technology is based on silicon's use as a semiconductor material, but research recently published in the journal Nature Materials shows that graphene conducts heat about 20 times faster than silicon.

A new form of graphene created by researchers at The University of Texas at Austin could prevent laptops and other electronics from overheating, ultimately, overcoming one of the largest hurdles to building smaller and more powerful electronic devices.

The research team, which includes colleagues at The University of Texas at Dallas, the University of California-Riverside and Xiamen University in China, published its findings online today in the Advance Online Publication of Nature Materials. The study will also appear in the print journal of Nature Materials.

RIVERSIDE, Calif. (www.ucr.edu) -- A University of California, Riverside engineering professor and a team of researchers have made a breakthrough discovery with graphene, a material that could play a major role in keeping laptops and other electronic devices from overheating.

A superlens would let you see a virus in a drop of blood and open the door to better and cheaper electronics. It might, says Durdu Guney, make ultra-high-resolution microscopes as commonplace as cameras in our cell phones.

The probability of being killed at work is 25 times higher for a coastal fisherman than for an offshore worker, according to a study from the UiS. Seafarers also run a high risk of accidents.

Fifteen people died on vessels registered in Norway during 2010, figures from the Norwegian Maritime Directorate (NMD) show. Eight of these were fishermen.

Although these statistics show that the number of work accidents went down in 2009-10, the total has remained at a high and stable level for many decades.

Just 100 nanometers in diameter, nanowires are often considered one-dimensional. But researchers at Northwestern University have recently reported that individual gallium nitride nanowires show strong piezoelectricity – a type of charge-generation caused by mechanical stress – in three dimensions.

The findings, led by Horacio Espinosa, James N. and Nancy J. Farley Professor in Manufacturing and Entrepreneurship at the McCormick School of Engineering and Applied Science, were published online Dec. 22 in Nano Letters.