Tech

BUFFALO, N.Y. -- In the quest to pack ever-smaller electronic devices more densely with integrated circuits, nanotechnology researchers keep running up against some unpleasant truths: higher current density induces electromigration and thermomigration, phenomena that damage metal conductors and produce heat, which leads to premature failure of devices.

But University at Buffalo researchers who study electronics packaging recently made a pleasant discovery: that's not the case with Single-Walled Carbon Nanotubes (SWCNTs).

WASHINGTON, March 17—The world's largest international conference on optical communications begins next week and continues from March 22-26 at the San Diego Convention Center in San Diego. The Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC) is the premier meeting where experts from industry and academia intersect and share their results, experiences, and insights on the future of electronic and wireless communication and the optical technologies that will enable it.

It is 6 p.m. and the museum is closing down for the night. The building's alarm system is switched on and the security guard does his rounds. A novel motion sensor developed by the Fraunhofer Institutes for Applied Polymer Research IAP in Potsdam-Golm and for Computer Architecture and Software Technology FIRST in Berlin could provide even more security in future, enabling window panes and glass doors to detect movements thanks to a special coating. If anything changes in front of the pane, or someone sneaks up to it, an alarm signal is sent to the security guard.

PITTSBURGH—Using rigorous computer calculations, researchers from Carnegie Mellon University and the Carnegie Institution of Washington have established evidence that supercooled silicon experiences a liquid-liquid phase transition, where at a certain temperature two different states of liquid silicon exist. The two states each have unique properties that could be used to develop new silicon-based materials. Furthermore, the methods developed can be applied to gain a better understanding of other materials.

WASHINGTON, March 16— To cut the cost of bringing high-speed Internet to rural areas, Dr. Ka Lun Lee and colleagues at the University of Melbourne and NEC Australia in the state of Victoria are experimenting with a way to boost the reach of existing technology. Their results, which show a new way to cheaply cover 99 percent of those living in this province, will be presented during the Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC), taking place March 22-26 in San Diego.

The next time an overnight snow begins to fall, take two bricks and place them side by side a few inches apart in your yard.

In the morning, the bricks will be covered with snow and barely discernible. The snowflakes will have filled every vacant space between and around the bricks.

What you will see, says Ivan Biaggio, resembles a phenomenon that, when it occurs at the smallest of scales on an integrated optical circuit, could hasten the day when the Internet works at superfast speeds.

CORAL GABLES, FL. (March 11, 2009)—Researchers at the University of Miami and at the Universities of Tokyo and Tohoku, Japan, have been able to prove the existence of a "spin battery," a battery that is "charged" by applying a large magnetic field to nano-magnets in a device called a magnetic tunnel junction (MTJ).

The creation of long platinum nanowires at the University of Rochester could soon lead to the development of commercially viable fuel cells.

CAMBRIDGE, Mass.--MIT engineers have created a kind of beltway that allows for the rapid transit of electrical energy through a well-known battery material, an advance that could usher in smaller, lighter batteries — for cell phones and other devices — that could recharge in seconds rather than hours.

The work could also allow for the quick recharging of batteries in electric cars, although that particular application would be limited by the amount of power available to a homeowner through the electric grid.