Tech

The National Institute of Standards and Technology (NIST) has demonstrated a novel chip-scale instrument made of carbon nanotubes that may simplify absolute measurements of laser power, especially the light signals transmitted by optical fibers in telecommunications networks.

A new study that provides surprising details on changes in Earth's climate from more than 100,000 years ago indicates that the last interglacial--the period between "ice ages"--was warmer than previously thought and may be a good analog for future climate, as greenhouse gases increase in the atmosphere and global temperatures rise.

The research findings also indicate that melting of the massive West Antarctic ice sheet may have contributed more to sea-level rise at that time than melting of the Greenland ice sheet.

Scientists at Aalto University, Finland, have demonstrated results that show a huge improvement in the light absorption and the surface passivation on highly absorbing silicon nanostructures. This has been achieved by applying atomic layer coating. The results advance the development of devices that require high sensitivity light response such as high efficiency solar cells.

ANN ARBOR—A new way of making crystalline silicon, developed by U-M researchers, could make this crucial ingredient of computers and solar cells much cheaper and greener.

Silicon dioxide, or sand, makes up about 40 percent of the earth's crust, but the industrial method for converting sand into crystalline silicon is expensive and has a major environmental impact due to the extreme processing conditions.

In biology, molecules can have multi-way interactions within cells, and until recently, computational analysis of these links has been "incomplete," according to T. M. Murali, associate professor of computer science in the College of Engineering at Virginia Tech.

His group authored an article on their new approach to address these shortcomings, titled "Reverse Engineering Molecular Hypergraphs," that received the Best Paper Award at the recent 2012 ACM Conference on Bioinformatics, Computational Biology and Biomedicine.

The discovery of a new bird-like dinosaur from the Jurassic period challenges widely accepted theories on the origin of flight.

Co-authored by Dr Gareth Dyke, Senior Lecturer in Vertebrate Palaeontology at the University of Southampton, the paper describes a new feathered dinosaur about 30 cm in length which pre-dates bird-like dinosaurs that birds were long thought to have evolved from.

PITTSBURGH—When writing or speaking, good grammar helps people make themselves be understood. But when used to concoct a long computer password, grammar — good or bad — provides crucial hints that can help someone crack that password, researchers at Carnegie Mellon University have demonstrated.

COLUMBUS, Ohio - It seems like a great idea: Provide instant corrections to web-surfers when they run across obviously false information on the Internet.

But a new study suggests that this type of tool may not be a panacea for dispelling inaccurate beliefs, particularly among people who already want to believe the falsehood.

"Real-time corrections do have some positive effect, but it is mostly with people who were predisposed to reject the false claim anyway," said R. Kelly Garrett, lead author of the study and assistant professor of communication at Ohio State University.

OAK RIDGE, Tenn., Jan. 23, 2013 -- Looking toward improved batteries for charging electric cars and storing energy from renewable but intermittent solar and wind, scientists at Oak Ridge National Laboratory have developed the first high-performance, nanostructured solid electrolyte for more energy-dense lithium ion batteries.

New research at the University of Chicago and the University of North Carolina at Chapel Hill shows that children begin to show signs of higher-level thinking skills as young as age 4 ½. Researchers have previously attributed higher-order thinking development to knowledge acquisition and better schooling, but the new longitudinal study shows that other skills, not always connected with knowledge, play a role in the ability of children to reason analytically.

COLUMBUS, Ohio—It weighs half as much as a sports car, and turns on a dime—so its no surprise that the electric car being developed at Ohio State University needs an exceptional traction and motion control system to keep it on the road.

With four wheels that turn independently, each with its own built-in electric motor and set of batteries, the experimental car is the only one of its kind outside of commercial carmakers' laboratories.

Marginal lands--those unsuited for food crops--can serve as prime real estate for meeting the nation's alternative energy production goals.

In the current issue of the journal Nature, scientists at Michigan State University (MSU) and other institutions show that marginal lands are a huge untapped resource for growing mixed-species cellulosic biomass.

These lands could annually produce up to 5.5 billion gallons of ethanol in the Midwest alone. Cellulosic ethanol is a biofuel produced from wood, grasses or the inedible parts of plants.

The world's smallest tunnels have a width of a few nanometers only. Researchers from Karlsruhe Institute of Technology (KIT) and Rice University, USA, have dug such tunnels into graphite samples. This will allow structuring of the interior of materials through self-organization in the nanometer range and tailoring of nanoporous graphite for applications in medicine and battery technology. Results are now presented in the scientific journal Nature Communications (DOI: 10.1038/ncomms2399).

Researchers from North Carolina State University have developed elastic, self-healing wires in which both the liquid-metal core and the polymer sheath reconnect at the molecular level after being severed.

WASHINGTON, Jan. 23, 2013—Silica microwires are the tiny and as-yet underutilized cousins of optical fibers. If precisely manufactured, however, these hair-like slivers of silica could enable applications and technology not currently possible with comparatively bulky optical fiber. By carefully controlling the shape of water droplets with an ultraviolet laser, a team of researchers from Australia and France has found a way to coax silica nanoparticles to self-assemble into much more highly uniform silica wires.