Tech

The use of words with emotional content in books has steadily decreased throughout the last century, according to new research from the Universities of Bristol, Sheffield, and Durham. The study, published today in PLOS ONE, also found a divergence between American and British English, with the former being more 'emotional' than the latter.

"Aiden, look!" piped NAO, a two-foot tall humanoid robot, as it pointed to a flat-panel display on a far wall. As the cartoon dog Scooby Doo flashed on the screen, Aiden, a young boy with an unruly thatch of straw-colored hair, looked in the direction the robot was pointing.

STANFORD, Calif. — The promise of repairing damaged hearts through regenerative medicine — infusing stem cells into the heart in the hope that these cells will replace worn out or damaged tissue — has yet to meet with clinical success. But a highly sensitive visualization technique developed by Stanford University School of Medicine scientists may help speed that promise's realization.

The technique is described in a study to be published March 20 in Science Translational Medicine. Testing the new imaging method in humans is probably three to five years off.

Using a low-cost apparatus designed to quickly and accurately measure the properties of handheld laser devices, National Institute of Standards and Technology (NIST) researchers tested 122 laser pointers and found that nearly 90 percent of green pointers and about 44 percent of red pointers tested were out of compliance with federal safety regulations. The NIST test apparatus was designed so that it can be replicated easily by other institutions.

WASHINGTON--Researchers at the U.S. Naval Research Laboratory have successfully demonstrated pulse tailoring, producing a time varying focal spot size known as 'focal zooming' on the world's largest operating krypton fluoride (KrF) gas laser.

EUGENE, Ore. -- (March 20, 2013) -- University of Oregon chemists say that ultra-thin films of nickel and iron oxides made through a solution synthesis process are promising catalysts to combine with semiconductors to make devices that capture sunlight and convert water into hydrogen and oxygen gases.

Information is routed through a series of stages, from the patient's body to the doctor's computer screen. The implant emits radio waves over a safe frequency. The patch collects the data and transmits them via Bluetooth to a mobile phone, which then sends them to the doctor over the cellular network.

A system that can detect numerous substances

THE WOODLANDS, Texas, March 19, 2013 — When it comes to examining the surface of rocks on Mars with a high-powered laser, five is a magic number for Los Alamos National Laboratory postdoctoral researcher Nina Lanza.

The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Argonne National Laboratory (ANL) today announced the release of the Transportation Energy Futures (TEF) study, an assessment of avenues to reach deep cuts in petroleum use and greenhouse gas (GHG) emissions in the transportation sector.

LIVERMORE, Calif. -- Researchers at Lawrence Livermore National Laboratory have performed record simulations using all 1,572,864 cores of Sequoia, the largest supercomputer in the world. Sequoia, based on IBM BlueGene/Q architecture, is the first machine to exceed one million computational cores. It also is No. 2 on the list of the world's fastest supercomputers, operating at 16.3 petaflops (16.3 quadrillion floating point operations per second).

EPFL scientists have combined two materials with advantageous electronic properties -- graphene and molybdenite -- into a flash memory prototype that is very promising in terms of performance, size, flexibility and energy consumption.

The realisation of quantum networks is one of the major challenges of modern physics. Now, new research shows how high-quality photons can be generated from 'solid-state' chips, bringing us closer to the quantum 'internet'.

The number of transistors on a microprocessor continues to double every two years, amazingly holding firm to a prediction by Intel co-founder Gordon Moore almost 50 years ago.

Better diagnosis and treatment of cancer could hinge on the ability to better understand a single cell at its molecular level. New research offers a more comprehensive way of analyzing one cell's unique behavior, using an array of colors to show patterns that could indicate why a cell will or won't become cancerous.

Prof. Heinrich Jaeger's research group examines materials and phenomena that appear simple at the surface, but which reveal tremendous complexity upon close examination. One such phenomenon is jamming, in which aggregates of randomly placed particles, including spheres or more complicated shapes, or even molecules, transition from fluid-like to solid-like behavior.

Researchers at the University of Southampton's Optoelectronics Research Centre (ORC) have created an artificial material, a metamaterial, with optical properties that can be controlled by electric signals.

Photonic metamaterials are artificial materials created by precise and extremely fine structuring of conventional media using nanotechnology. They offer numerous new applications from cloaking to radically improved solar cells. However, the properties of metamaterials are usually fixed.