Tech

When you make a new material on a nano scale how can you see what you have made? A team lead by a Biotechnology and Biological Sciences research Council (BBSRC) fellow has made a significant step toward overcoming this major challenge faced by nanotechnology scientists. With new research published today (13 August) in ChemBioChem, the team from the University of Liverpool, The School of Pharmacy (University of London) and the University of Leeds, show that they have developed a technique to examine tiny protein molecules called peptides on the surface of a gold nanoparticle.

SIGGRAPH Los Angeles, CA, August 12, 2008 -- The images of rocks, clouds, marble and other textures that serve as background images and details for 3D video games are often hand painted and thus costly to generate. A breakthrough from a UC San Diego computer science undergraduate now offers video game developers the possibility of high quality yet lightweight images for 3D video games that are generated "on the fly" and are free of stretch marks, flickering and other artifacts.

WORCESTER, Mass. – August 11, 2008 – Anyone who has walked barefoot across a parking lot on a hot summer day knows that blacktop is exceptionally good at soaking up the sun's warmth. Now, a research team at Worcester Polytechnic Institute (WPI) has found a way to use that heat-soaking property for an alternative energy source.

Through asphalt, the researchers are developing a solar collector that could turn roads and parking lots into ubiquitous—and inexpensive–sources of electricity and hot water.

Scientists develop the world's thinnest balloon

Researchers in New York are reporting development of the world's thinnest balloon, made of a single layer of graphite just one atom thick. This so-called graphene sealed microchamber is impermeable to even the tiniest airborne molecules, including helium. It has a range of applications in sensors, filters, and imaging of materials at the atomic level, they say in a study scheduled for the August 13 issue of ACS' Nano Letters.

Berkeley -- Scientists at the University of California, Berkeley, have for the first time engineered 3-D materials that can reverse the natural direction of visible and near-infrared light, a development that could help form the basis for higher resolution optical imaging, nanocircuits for high-powered computers, and, to the delight of science-fiction and fantasy buffs, cloaking devices that could render objects invisible to the human eye.

JACKSONVILLE, Fla. -- Researchers have devised an inexpensive way to produce plastic sheets containing billions of nanoantennas that collect heat energy generated by the sun and other sources. The technology, developed at the U.S. Department of Energy's Idaho National Laboratory, is the first step toward a solar energy collector that could be mass-produced on flexible materials.

National Institute of Standards and Technology (NIST) researchers successfully demonstrated a prototype approach to maintain two-way communications with first responders as they make their way in building fires, and mine and tunnel collapses. These and other disasters in enclosed environments are often rife with radio dead spots and conditions that can severely weaken signals.

SALT LAKE CITY – A University of Utah study is shedding light on an important, unsolved physics problem: the relationship between chaos theory – which is based on 300-year-old Newtonian physics – and the modern theory of quantum mechanics.

The study demonstrated a fundamental new property – what appears to be chaotic behavior in a quantum system – in the magnetic "spins" within the nuclei or centers of atoms of frozen xenon, which normally is a gas and has been tested for making medical images of lungs.

By examining natural variation among cottonwood trees in nature, scientists at Oak Ridge National Laboratory hope to develop a strategy to maximize production of ethanol from cellulosic biomass.

Through a process known as association mapping, scientists will attempt to identify differences in cell wall chemistry among trees growing in natural populations with the goal being to determine which trees are the best candidates for biofuel.

Scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory and the University of California at Berkeley have created the world's first all-integrated sensor circuit based on nanowire arrays, combining light sensors and electronics made of different crystalline materials. Their method can be used to reproduce numerous such devices with high uniformity.

War casualties are typically kept behind tightly closed doors, but one company keeps the mangled pieces of its first casualty on display. This is no ordinary soldier, though—it is Packbot from iRobot Corporation.

BERKELEY, CA – The pinhole camera, a technique known since ancient times, has inspired a futuristic technology for lensless, three-dimensional imaging. Working at both the Advanced Light Source (ALS) at the U.S. Department of Energy's Lawrence Berkeley National Laboratory, and at FLASH, the free-electron laser in Hamburg, Germany, an international group of scientists has produced two of the brightest, sharpest x-ray holograms of microscopic objects ever made, thousands of times more efficiently than previous x-ray-holographic methods.

CAMBRIDGE, Mass. -- In a revolutionary leap that could transform solar power from a marginal, boutique alternative into a mainstream energy source, MIT researchers have overcome a major barrier to large-scale solar power: storing energy for use when the sun doesn't shine.

Until now, solar power has been a daytime-only energy source, because storing extra solar energy for later use is prohibitively expensive and grossly inefficient. With today's announcement, MIT researchers have hit upon a simple, inexpensive, highly efficient process for storing solar energy.

Scientists at the University of California, Berkeley, have devised a way to squeeze light into tighter spaces than ever thought possible, potentially opening doors to new technology in the fields of optical communications, miniature lasers and optical computers.

PASADENA, Calif.--Researchers at the California Institute of Technology have turned science fiction into reality with their development of a super-compact high-resolution microscope, small enough to fit on a finger tip. This "microscopic microscope" operates without lenses but has the magnifying power of a top-quality optical microscope, can be used in the field to analyze blood samples for malaria or check water supplies for giardia and other pathogens, and can be mass-produced for around $10.