Culture

Environmental destruction linked to African population raises questions about family sizes

image: Map of countries in Africa with background shading indicating approximate relative density of human populations (data from the Global Rural-Urban Mapping Project)

Image: 
Global Rural-Urban Mapping Project

Africa is projected to be home to nearly 3 billion people by 2100, but rapid population growth will cause widespread environmental degradation unless effective family planning becomes widespread policy, according to new research that tracked increased population pressures on the continent's ecosystems.

Researchers from Flinders University and the University of Helsinki have examined the environmental impacts of population density, variation in the distribution of wealth among citizens, and a country's overall economic activity across the African continent.

Using a combination of ecological footprint, species threat, freshwater removal, forest loss, livestock density, cropping intensity, and greenhouse-gas emissions, the researchers developed sophisticated modelling to determine which socio-economic indicators best explain the relative environmental performance among countries.

"Our finding that the strongest predictor of environmental performance among nations in Africa is population density means that countries with the most people suffered relatively more environmental degradation on average," says lead researcher Professor Corey Bradshaw, from the Global Ecology Laboratory at Flinders University.

"The result brings into question the reality of the United Nations' Sustainability Development Goals because none of the targets mentions reducing human population size as a pathway to achieving their goals."

"Dedicated family planning and government policies that attempt to limit population growth and promote economic development that does not compromise environmental integrity are needed to support sustainability across Africa."

The findings -- published in the Nature journal Scientific Reports -- come after a new United Nations report found that the fastest population growth on Earth is most likely to occur in sub-Saharan Africa, which is expected to double its population in the next 30 years.

"Given the rapid growth of its population, Africa stands to lose many of its already threatened species and ecosystems over the coming decades, especially as overseas demand for timber, minerals, fuels, agricultural products, seafood, and wildlife increases" says co-author Dr Enrico Di Minin, a conservation scientist at the University of Helsinki.

Dr Di Minin highlighted that while there are many policy levers that African nations can use to improve the future state of their environments and the societies that depend on them, limiting excessive human population growth will likely facilitate the best results.

"But there is some relatively good environmental news in at least parts of Africa", states Professor Bradshaw. "Despite having other problems, countries like Central African Republic, Botswana, Namibia, and Congo have been doing a lot better then many of their neighbours in the environment stakes".

"But some of the worst environmental performers are densely populated countries like South Africa, Algeria, and Nigeria", Professor Bradshaw warns.

"As pressures on the environment grow, most African nations will have to focus on mitigating the negative interactions of high population growth and unsustainable development if they want to have any chance of maintaining the beautiful, rich, and unique animals and plants for which Africa is famed".

Credit: 
Flinders University

Unexpected mechanism allows CaMKII to decode calcium signaling in the brain

image: Representative fluorescence lifetime images of this sensor in response to glutamate uncaging to simulate plasticity in single synapses. Warmer colors indicate lower fluorescence lifetime, corresponding to a higher activity.

Image: 
Max Planck Florida Institute for Neuroscience

In an increasingly connected world, translators and interpreters play a key role in the exchange of ideas and information. They serve the vital purpose of accurately conveying meaning from one language to the next. Nowadays, almost every modern industry has the crucial need for translators. But did you know that your brain has need for them too?

Though not in the traditional sense, cells in your brain are actively relaying information and communicating with each other in various languages. Neurons speak using neurotransmitters, molecules and electrical signals. In order to properly understand one another, cells in your brain need the skill of proficient translators. Versed in the unique languages of the brain, specialized proteins precisely decipher incoming information and accurately convey it from one neuron to the next.

An important interpreter in the brain named calcium/calmodulin-dependent protein kinase, or CaMKII, plays a critical role in the process of learning and memory. When we learn new skills or form memories, dynamic changes occur at sites of communication between neurons called synapses. As synapses are repeatedly activated, calcium signals initiate a complex cascade that leads to long-lasting alterations in the strength of a neuron's connections. This process, known as synaptic plasticity, is thought to underlie learning and memory. Playing a critical role in plasticity, CaMKII interprets calcium signals and converts them into the long-lasting changes that help encode memory. But the exact mechanisms behind this process have remained elusive.

Recently published in Nature Communications, a new study from the lab of Ryohei Yasuda, Ph.D., Scientific Director at MPFI has shed light on the unexpected mechanism that allows CaMKII to decode and translate calcium signaling in the brain. Using advanced imaging techniques and novel biosensors, Yasuda and his team have revealed new insights into CaMKII's activity at the single synapse level.

In order to study CaMKII's role in synaptic plasticity, the team developed novel sensors capable of disentangling the protein's two distinct forms of activity. The first sensor, CaMKIIα-CaM, reports CaMKII activity that is dependent on its association with calmodulin (CaM); a protein that mediates the binding of calcium to CaMKII. The second sensor, Camuiα, reports CaMKII's total activation, including both CaM dependent and CaM independent autonomous activity produced when CaMKII undergoes autophosphorylation.

Employing two-photon microscopy and glutamate uncaging to simulate plasticity in single synapses, the team used their newly design sensors to investigate the varying forms of CaMKII activity in neurons. Previously, it was thought that CaMKII decodes calcium signaling primarily through its CaM dependent activity, but MPFI scientists have uncovered that this might not be the case. Using the CaMKIIα-CaM sensor, they noticed a rapid but small increase in CaM dependent activity that quickly plateaued when calcium pulses are evoked in the synapses. As calcium pulses continue, there were no further increases in CaMKIIα-CaM activity within the neuron. Contrastingly, the Camuiα sensor demonstrated more robust activity and a step-wise activation; where increasing the number of calcium pulses directly correlated with increased CaMKII activity.

Intriguingly, these results indicate that at a synaptic level, CaMKII's activity is predominantly driven by its autonomous activation and to a much smaller extent by its interaction with CaM. In addition, these findings reveal that the autonomous activity of CaMKII is responsible for responding to and interpreting the language of calcium signaling during the process of synaptic plasticity.

"CaMKII has been well-established as a critically important player in the process of synaptic plasticity, but due to its complex activation profile, a working model of its activity has been difficult to achieve." notes Yasuda, "With new insights gathered from our novel sensors, we are now able to propose a model that is consistent with our experimental data; broadening our understanding of how molecules contribute to memory."

Credit: 
Max Planck Florida Institute for Neuroscience

ALS patients may benefit from more glucose

Increased glucose, transformed into energy, could give people with amyotrophic lateral sclerosis, or ALS, improved mobility and a longer life, according to new findings by a University of Arizona-led research team.

Physicians have long known that people with ALS experience changes in their metabolism that often lead to rapid weight loss in a process called hypermetabolism. According to the study's lead author Ernesto Manzo, a UA alumnus and postdoctoral researcher in the Department of Molecular and Cellular Biology, hypermetabolism can be a relentless cycle.

People with ALS use more energy while resting than those without the disease, while simultaneously they often struggle to effectively make use of glucose, the precise ingredient a body needs to make more energy. Experts have not known exactly what happens in a patient's cells to cause this dysfunction or how to alleviate it.

"This project was a way to parse out those details," said Manzo, who described the results, published online in eLife, as "truly shocking."

The study revealed that when ALS-affected neurons are given more glucose, they turn that power source into energy. With that energy, they're able to survive longer and function better. Increasing glucose delivery to the cells, then, may be one way to meet the abnormally high energy demands of ALS patients.

"These neurons were finding some relief by breaking down glucose and getting more cellular energy," Manzo said.

ALS is almost always a progressive disease, eventually taking away patients' ability to walk, speak and even breathe. The average life expectancy of an ALS patient from the time of diagnosis is two to five years.

"ALS is a devastating disease," said Daniela Zarnescu, UA professor of molecular and cellular biology and senior author on the study. "It renders people from functioning one day to rapidly and visibly deteriorating."

Previous studies on metabolism in ALS patients have focused primarily on what happens at the whole-body level, not the cellular level, Zarnescu explained.

"The fact that we uncovered a compensatory mechanism surprised me," Zarnescu said. "These desperate, degenerating neurons showed incredible resilience. It is an example of how amazing cells are at dealing with stress."

The novelty of the findings partially lies in the fact that metabolism in ALS patients has remained poorly understood, Zarnescu said.

"It's difficult to study, in part because of limited accessibility to the nervous system," she said.

Because scientists can't scrape away neurons from the brain without causing irreparable damage to a patient, the researchers used fruit flies as a model.

"Fruit flies can teach us a lot about human diseases," Manzo said.

In the lab, he and Zarnescu used high-powered microscopes to observe the motor neurons of fruit flies in their larval state, paying close attention to what happened as they provided more glucose.

They found that when they increased the amount of glucose, the motor neurons lived longer and moved more efficiently. When the researchers took glucose away from the neurons, the fruit fly larva moved more slowly.

Their findings were consistent with a pilot clinical trial, which found a high carbohydrate diet was one possible intervention for ALS patients with gross metabolic dysfunction.

"Our data essentially provide an explanation for why that approach might work," Zarnescu said. "My goal is to convince clinicians to perform a larger clinical trial to test this idea."

Credit: 
University of Arizona

Reining in the ecological effects of free-roaming horses

Free-roaming horses are an icon of the American West, frequently appearing in art and media as exemplars of the spirited freedom that underlies the region's folklore. Viewed through an ecological lens, however, these animals may present a different picture--one of degraded landscapes and shrinking biodiversity.

Writing in BioScience, Kirk W. Davies and Chad S. Boyd describe the ecological threats posed by free-roaming horses in the US West and the challenges faced in managing them. According to the authors, the effects of these horses are extensive, ranging from soil compaction and domination of scarce water resources to the over-grazing of native plant species.

Davies and Boyd catalog the numerous effects on local landscapes, pointing to a study that found that "areas from which horses had been excluded compared with horse-occupied areas in Great Basin uplands had two to three times greater native grass cover and frequency." As a result, the authors caution, "free-roaming-horse use over time could permanently affect the productivity and function of some areas." In addition, horses have numerous effects on local fauna, and the authors note that "horses have repeatedly been shown to limit and even exclude native wildlife's use of water sources."

The authors point out that the problem is vast, with free-roaming horses and burros occupying 31.6 million acres of federal lands, with a population of 81,951 animals, exceeding the Bureau of Land Management's established "appropriate management level" by more than 55,000 individuals. Further complicating matters is the uncertainty that beleaguers attempts to understand the horses' effects. The authors note that "domestic livestock grazing often confounds the ecological effects of free-roaming-horse grazing, giving rise to considerable uncertainty regarding the full extent and degree of impact of horses on rangeland ecological processes." The authors draw clear distinction between continuous year-around grazing by free-roaming horses and planned grazing by livestock, which is comparatively limited in duration, takes place during a specific season, and allows for periodic rest. But the uncertainty, caution Davies and Boyd, makes managing horse population challenging, especially in light of free-roaming horses' prominent place in the public's imagination. Horse populations are growing at a mean average rate of 20 percent per year, and public resistance to horse removal has thus far stymied efforts to address their rising numbers.

The solution the authors pose is rigorous ecological research with an eye toward promoting sociopolitical change. It is Davies and Boyd's expressed hope that "change in the sociopolitical arena around free-roaming horses can be stimulated by rigorous ecological research and using that research to inform scientifically sound management of free-roaming horses." Through this, they argue, it may be possible to address the far-ranging effects of this charismatic but ecologically imposing species.

Credit: 
American Institute of Biological Sciences

Researchers find that probiotic bacteria reduces the impact of white-nose syndrome in bats

image: A little brown bat (Myotis lucifugus) covered in the fungus, P. destructans, which causes white-nose syndrome. Photo credit Joseph Hoyt.

Image: 
Virginia Tech

It is widely accepted that probiotic bacteria are beneficial to human health, but what if they could also be used to reduce wildlife disease and conserve biodiversity?

Researchers from Virginia Tech and UC Santa Cruz did just that in a field trial on the effect of probiotic bacteria on white-nose syndrome in bat populations. They found that it reduces the impact of the disease about five-fold.

These findings were published recently in Scientific Reports.

Bats are dominant night-time insect predators that can greatly benefit agriculture, but their populations are being decimated by the fungal disease called white-nose syndrome.

White-nose syndrome has destroyed bat populations across Eastern North America, and it shows no signs of stopping as it spreads westward.

"Our results suggest that the probiotic bacteria, Pseudomonas fluorescens, is a useful tool for reducing white-nose syndrome impacts on bat populations, particularly if combined with other management tools," said Joseph Hoyt, a research scientist in the Department of Biological Sciences in the College of Science.

"With the severity of white-nose syndrome declines and facing the potential extinction of some species, it's essential that we consider out-of-the-box solutions to reducing population impacts. Given the notorious difficulty of treating fungal infections in mammals, probiotics are a sensible solution for reducing fungal burdens of animals," said Kate Langwig, the second author of this paper and an assistant professor in the Department of Biological Sciences in the College of Science and an affiliated faculty member of the Global Change Center.

White-nose syndrome is a disease that spreads in the winter and causes bats to leave their roosts during hibernation. The fungus, which kills the bats over several months, depletes the bats' fat stores, forcing them to expend even more energy on finding food that isn't available during the harsh winter. Eventually, most bats die of starvation or exposure to the cold.

Researchers are seeing declines that are rendering some bat species functionally extinct. Specifically, the little brown bat, Northern long-eared bat, Indiana bat, and the tri-colored bat populations have declined by 70 to 99 percent across 44 states since 2006.

"Little brown bats were not an uncommon species prior to the emergence of this disease. It would be like losing robins from the bird community. These are abundant backyard species that you would see at nighttime that have essentially been removed," Hoyt said.

One species, the Northern long-eared bat, has been extirpated from most of its range by white-nose syndrome. "As far as mainland populations go, if we see a single bat all winter - that's a lot," Hoyt said. "At this point, it may be too late for that species in terms of trying save it. I think its demise happened so quickly that it was not something that anyone could respond to fast enough."

Populations of little brown bats, Northern long-eared bats, tri-colored bats, and the big brown bats were sampled for the bacteria Pseudomonas fluorescens to make sure similar bacteria were naturally present before introducing a higher dosage in the experimental treatment.

In an abandoned mine in Wisconsin, Hoyt and his research team tested the efficacy of P. fluorescens in two simultaneous experiments with caged and free-flying little brown bats. All the bats were tagged with a passive integrated transponder (PIT), which allowed researchers to identify and keep track of when individual bats emerged from the mine.

The purpose of doing the free-flying experiment was to conduct a natural field trial, where bats can move freely and interact with the environment the way that they normally would. Researchers found that measuring the amount of pathogen associated with each bat helped them to better predict the bat's survival time. Interestingly, researchers also saw that treatment with P. fluorescens lengthened the amount of time that bats stayed in the mine.

"Our treatment delayed emergence time, which would put more bats emerging during spring-time when there are insects available for them to eat, allowing them to recover from the disease," Hoyt said.

The caged experiment was meant to counteract the uncertainty of the free-flying experiment by keeping them in a controlled area, while providing researchers key information about how or why they died. However, Hoyt said that, in general, bats are challenging to work with.

"In our caged experiment, there were some individuals that got really sick and likely influenced, or biased, our survival estimates for other individuals." In the end, the researchers found that the amount of fat that a bat had was the only important factor in predicting their survival in the cage trial, not how infected they were.

In the free-flying experiment, their controls had only 10 percent survivability while their treatment group had 50 percent. Hoyt and his team are thinking of ways that the probiotic treatment can be developed to further increase survival. Currently, researchers are testing to see if pairing probiotics with other forms of treatment can increase survival even more.

This is one of the first published papers that show that a probiotic can reduce the impact of pathogens on wildlife. "It's some potential hope that with the right organism and by tinkering around with different techniques, we can start to develop things similar to what has been done with humans," Hoyt said.

As far as what you can do to help the bats, there are many ways to be "bat-friendly." For instance, there are guidelines that you can follow that will help reduce the impact that we have on bats. Putting up bat-boxes, protecting waterways, and changing landscaping to provide insects for bats are good places to start.

Credit: 
Virginia Tech

Blood supply therapy bid boosted by fresh insights into key cells

Therapies to improve recovery after a heart attack could be developed following fresh insights into how key cells are formed.

Scientists have developed a system that allows them to study cells that line the walls of blood vessels, called endothelial cells.

Researchers say the findings shed light on how the cells can be best grown in the lab for use as therapies. They could also help develop drugs to prompt patients' own endothelial cells to regenerate and grow new blood vessels.

Such treatments could potentially help people with heart disease and other conditions that affect the blood supply, such as peripheral vascular disease - a disorder that can lead to the loss of lower limbs.

Endothelial cells are vital to the process of supplying blood to damaged tissue following a heart attack. The team at the University of Edinburgh studied embroyonic stem cells - early stage cells that are not yet developed - and turned them into endothelial cells in the lab.

They used advanced techniques to visualise the genes that are turned on or off in individual cells as they undergo the transition to become endothelial cells.

Understanding these genetic cues sheds new light on the signals that drive endothelial cell formation and maturation. The researchers say this is a step towards developing treatments that could prompt the growth of functioning new blood vessels in patients.

The research was led by the British Heart Foundation Centre for Cardiovascular Science at the University of Edinburgh and is published in the European Heart Journal. It was funded by the Medical Research Council, Wellcome, the European Research Council and the British Heart Foundation.

Professor Andrew Baker, Head of Centre for Cardiovascular Science at the University of Edinburgh, said: "This study used new technology to map how endothelial cells are formed. We can now harness this information to understand how to activate these processes in patients or use these cells as a cell therapy approach by directly injecting them into damaged tissue."

Credit: 
University of Edinburgh

Keeping active or becoming more active in middle and older age linked to longer life

Keeping physically active or becoming more active during middle and older age is associated with a lower risk of death, regardless of past activity levels or existing health conditions, suggests a large UK study published by The BMJ today.

At the population level, meeting and maintaining at least the minimum public health recommendations (150 minutes per week of moderate-intensity physical activity) would potentially prevent 46% of deaths associated with physical inactivity, say the researchers.

Previous studies have linked physical activity to lower risk of death, cardiovascular disease, and certain cancers. But few studies have looked at how changes in physical activity over time are associated with subsequent risk of death.

So to address this knowledge gap, researchers from the MRC Epidemiology Unit at the University of Cambridge analysed how long term changes in physical activity are associated with risk of all-cause, cardiovascular and cancer deaths.

They used data for 14,599 men and women aged 40-79 from the European Prospective Investigation into Cancer and Nutrition-Norfolk (EPIC-Norfolk) study, who were recruited between 1993-1997.

Participants were assessed at the start of the study and then a further three times over an average of 7.6 years, along with other risk factors up to 2004. From this point in time, mortality was assessed up to 2016, for an average of 12.5 years of follow-up.

Physical activity energy expenditure (PAEE) was derived from questionnaires and calibrated against combined movement and heart monitoring measurements.

Overall physical activity included activity at work (e.g. sedentary office work, standing work, physical and heavy manual work) and leisure-time activity, such as cycling, sports and recreational activities.

During the study period, there were 3,148 deaths, including 950 deaths from cardiovascular disease and 1,091 deaths from cancer.

After controlling for existing physical activity and other risk factors such as diet, bodyweight, medical history, blood pressure and cholesterol levels, higher physical activity levels and increases in physical activity over time were associated with a lower risk of death.

For each 1kJ/kg/day per year increase in PAEE (equivalent to being inactive at the start of the study and gradually, over five years, meeting minimum physical activity guidelines), the researchers found a 24% lower risk of death from any cause, a 29% lower risk of cardiovascular death, and an 11% lower risk of cancer death.

Results were similar in those with and without a history of cardiovascular disease and cancer. What's more, compared with consistently inactive people, those who became more active over time had a lower risk of death from all causes, regardless of past activity levels.

But the benefits were greatest for those with existing high levels of physical activity who became even more active over time, with a 42% lower risk of mortality.

This is an observational study, and as such, can't establish cause. And the authors point out that the sample was made up of people who were available for follow-up almost a decade after initial recruitment, which may influence generalisability of the results.

But they say that this is a large study with long follow-up and repeat monitoring, that controlled for established risk factors.

"These results are encouraging, not least for middle aged and older adults with existing cardiovascular disease and cancer, who can still gain substantial longevity benefits by becoming more active, lending further support to the broad public health benefits of physical activity," they write.

"In addition to shifting the population towards meeting the minimum physical activity recommendations, public health efforts should also focus on the maintenance of physical activity levels, specifically preventing declines over mid to late life," they conclude.

Credit: 
BMJ Group

Climate warming could increase malaria risk in cooler regions

image: A microscope view of the midgut of an Anopheles stephensi mosquito infected with malaria parasites (the round circles). The researchers found that malaria parasites develop faster in mosquitoes at lower temperatures than previously thought.

Image: 
Penn State

UNIVERSITY PARK, Pa. -- Malaria parasites develop faster in mosquitoes at lower temperatures than previously thought, according to researchers at Penn State and the University of Exeter. The findings suggest that even slight climate warming could increase malaria risk to hundreds of thousands, if not millions, of people -- including travelers -- in areas that are currently too cold for malaria parasites to complete their development.

"The rate of malaria transmission to humans is strongly determined by the time it takes for the parasites to develop in the mosquito," said Matthew Thomas, professor and Huck scholar in ecological entomology, Penn State. "The quicker the parasites develop, the greater the chance that the mosquito will survive long enough for the parasites to complete their development and be transmitted to humans."

According to Thomas, previous work suggested that in cooler temperatures malaria parasites developed too slowly to be transmitted to people during mosquitoes' lifetimes. That work, he said, was conducted almost 100 years ago using a Russian species of mosquito.

"Our study is the first since the 1930s to investigate the relationship between temperature and malaria parasite development," said Thomas. "Our results challenge this long-standing model in malaria biology."

The researchers used two of the most important malaria-hosting mosquito species in the world -- Anopheles stephensi and Anopheles gambiae -- to conduct their experiments. They maintained these malaria-infected mosquitoes in the laboratory under a variety of temperatures ranging from 16 to 20 degrees Celsius, or 60 to 68 degrees Fahrenheit. They maintained a separate control set of mosquitoes at 27 degrees Celsius, or about 80 degrees Fahrenheit, which is the temperature at which malaria transmission is typically highest.

In addition, the team varied the daily temperatures by 10 degrees Celsius -- 5 degrees Celsius above and below the daily mean -- since such variation in temperature is common in natural settings when it is cooler at night and warmer in the daytime. The findings appear in the June 26 issue of Biology Letters.

The traditional model estimates that parasites in the mosquito take 56 days to develop at temperatures just above the minimum threshold for development -- a cool 18 degrees Celsius, or 64 degrees Fahrenheit. However, the current study shows that as few as 31 days are required for such development for Anopheles stephensi.

The researchers also found that variation in temperature at this cooler end of the range promotes faster parasite development. Parasites developed in as few as 27 days at 18 degrees Celsius, or 64 degrees Fahrenheit, under realistic variable temperature conditions.

"Our work shows that even small increases in temperature could dramatically increase malaria infections in humans because the parasites develop much faster at these lower temperatures than has been previously estimated," said Jessica Waite, senior scientist, Penn State. "Parasite development rate further increases when temperatures fluctuate naturally, from cooler at night to warmer in the day."

According to Waite, the findings have implications for potentially millions of people living in the higher elevations of Africa, such as the Kenyan and Ethiopian highlands, and in South America.

"As temperatures increase with climate change, infectious mosquitoes in areas surrounding mountains, for example, may be able to transmit the parasite higher up the mountains than they have in the past," she said. "Our results suggest that small rises in temperature could lead to greater increases in transmission risk than previously thought."

Credit: 
Penn State

Protein scissors for cellular transport

In many ways, a cell is like a city. Proteins or people do daily work to keep the economy going, and items are imported and exported for trade. Imports are shipped into cells by way of endocytosis. Before reaching their final destination, they are kept at the early endosome, a structure that determines whether the material will be disposed, recycled or delivered to a specific region in the cell. A new study in iScience by researchers at the Nara Institute of Science and Technology (NAIST), Japan, demonstrates how ankyrin repeat and KH domain-containing protein 1 (ANKHD1) are instrumental in forming the early endosome.

Endocytosis describes the formation of vesicles at the membrane and then transports inside the cell.

"The cell moves material through vesicles that are cut from the membrane. Only a small number of proteins are known to execute membrane scission, and these proteins include BAR domain proteins," notes NAIST Professor Shiro Suetsugu, who managed the study.

"ANKHD1 contains an ankyrin repeat domain [ARD], which we previously found to have lipid-binding ability," he continues. Ankyrins are proteins that bind to proteins, but their membrane binding capacity is relatively unexplored.

To investigate more about ARD, the study began with 600 candidates, but settled with ANKHD1 when liposome sedimentation assays indicated its ARD had strong vesiculation activity.

The ARD of ANKHD1 contains 25 ankyrin repeats that the scientists divided into one group of 15 and another group of 10. To test the function of these two groups, they established a series of ANKHD1 constructs: one ARD with all 25 ankyrin repeats, one with only the group of 15 and one with only the group of 10, with the first two including the N-terminal, and tested how these constructs reacted with liposomes.

"We found that the two groups had different roles, vesiculation and dimerization," says Suetsugu.

The vesiculation ability of the group of 10 broke liposomes down into small vesicles and was attributed to an amphipathic helix and electrostatic interactions with the liposome, but this ability was enhanced by the dimerization of the group of 15. This process resembled how BAR proteins interact with membranes.

Moreover, reducing the ANKHD1 expression in mammalian cells increased the size of the early endosome, indicating a membrane-deformation function that could impact intracellular trafficking.

"The vesiculation of early endosomes is a crucial and early step in intracellular trafficking, but very little is known about the proteins that regulate this system. Abnormalities at this stage can have a tremendous impact on many cellular functions," says Suetsugu.

Credit: 
Nara Institute of Science and Technology

3D printed prosthetic hand can guess how you play rock, paper, scissors

video: The wearer picks up two different types of blocks using the prosthetic hand

Image: 
Hiroshima University Biological Systems Engineering Lab

Losing a limb, either through illness or accident, can present emotional and physical challenges for an amputee, damaging their quality of life. Prosthetic limbs can be very useful but are often expensive and difficult to use. The Biological Systems Engineering Lab at Hiroshima University has developed a new 3D printed prosthetic hand combined with a computer interface, which is their cheapest, lightest model that is more reactive to motion intent than before. Previous generations of their prosthetic hands have been made of metal, which is heavy and expensive to make.

Professor Toshio Tsuji of the Graduate School of Engineering, Hiroshima University describes the mechanism of this new hand and computer interface using a game of "Rock, Paper, Scissors". The wearer imagines a hand movement, such as making a fist for Rock or a peace sign for Scissors, and the computer attached to the hand combines the previously learned movements of all 5 fingers to make this motion.

"The patient just thinks about the motion of the hand and then the robot automatically moves. The robot is like a part of his body. You can control the robot as you want. We will combine the human body and machine like one living body." explains Tsuji.

Electrodes in the socket of the prosthetic equipment measure electrical signals from nerves through the skin-- similar to how an ECG measures heart rate. The signals are sent to the computer, which only takes five milliseconds to make its decision about what movement it should be. The computer then sends the electrical signals to the motors in the hand.

The neural network (named Cybernetic Interface), that allows the computer to "learn", was trained to recognize movements from each of the 5 fingers and then combine them into different patterns to turn Scissors into Rock, pick up a water bottle or to control the force used to shake someone's hand.

"This is one of the distinctive features of this project. The machine can learn simple basic motions and then combine and then produce complicated motions." Tsuji says.

Hiroshima University Biological Systems Engineering Lab tested the equipment with patients in the Robot Rehabilitation Center in the Hyogo Institute of Assistive Technology, Kobe. The researchers also collaborated with the company Kinki Gishi to develop the socket to accommodate the amputee patients' arm.

Seven participants were recruited for this study, including one amputee who had worn a prosthesis for 17 years. Participants were asked to perform a variety of tasks with the hand that simulated daily life, such as picking up small items, or clenching their fist. The accuracy of prosthetic hand movements measured in the study for single simple motion was above 95 %, and complicated, unlearned motions was 93%.

However, this hand is not quite ready for all wearers. Using the hand for a long time can be burdensome for the wearer as they must concentrate on the hand position in order to sustain it, which caused muscle fatigue. The team are planning on creating a training plan in order to make the best use of the hand and hope it will become an affordable alternative on the prosthetics market.

Credit: 
Hiroshima University

Disrupted sleep in one's 50s, 60s raises risk of Alzheimer's disease

image: Greater levels of pathological tau protein, primarily in the brain's medial temporal lobe (orange and yellow at bottom in cross section of the brain), were associated with weaker synchrony of slow waves (red) and sleep spindles (orange), two brain waves important for storing memories while we sleep.

Image: 
UC Berkeley image by Matthew Walker and Joseph Winer

People who report a declining quality of sleep as they age from their 50s to their 60s have more protein tangles in their brain, putting them at higher risk of developing Alzheimer's disease later in life, according to a new study by psychologists at the University of California, Berkeley.

The new finding highlights the importance of sleep at every age to maintain a healthy brain into old age.

"Insufficient sleep across the lifespan is significantly predictive of your development of Alzheimer's disease pathology in the brain," said the study's senior author, Matthew Walker, a sleep researcher and professor of psychology. "Unfortunately, there is no decade of life that we were able to measure during which you can get away with less sleep. There is no Goldilocks decade during which you can say, 'This is when I get my chance to short sleep.'"

Walker and his colleagues, including graduate student and first author Joseph Winer, found that adults reporting a decline in sleep quality in their 40s and 50s had more beta-amyloid protein in their brains later in life, as measured by positron emission tomography, or PET. Those reporting a sleep decline in their 50s and 60s had more tau protein tangles. Both beta-amyloid and tau clusters are associated with a higher risk of developing dementia, though not everyone with protein tangles goes on to develop symptoms of dementia.

Based on the findings, the authors recommend that doctors ask older patients about changes in sleep patterns and intervene when necessary to improve sleep to help delay symptoms of dementia. This could include treatment for apnea, which leads to snoring and frequent halts in breathing that interrupt sleep, and cognitive behavioral therapy for insomnia (CBT-I), a highly effective way to develop healthy sleep habits. It may even include simple sleep counseling to convince patients to set aside time for a full eight hours of sleep and simple sleep hygiene tricks to accomplish that.

"The idea that there are distinct sleep windows across the lifespan is really exciting. It means that there might be high-opportunity periods when we could intervene with a treatment to improve people's sleep, such as using a cognitive behavioral therapy for insomnia," Winer said. "Beyond the scientific advance, our hope is that this study draws attention to the importance of getting more sleep and points us to the decades in life when intervention might be most effective."

The 95 subjects in the study were part of the Berkeley Aging Cohort Study (BACS), a group of healthy older adults -- some as old as 100 years of age -- who have had their brains scanned with PET, the only technique capable of detecting both beta-amyloid tangles and, very recently, tau tangles, in the brain.

Winer, Walker and their colleagues reported their results online last week in the Journal of Neuroscience.

Brain waves out of sync

The team also made a second discovery. They found that people with high levels of tau protein in the brain were more likely to lack the synchronized brain waves that are associated with a good night's sleep. The synchronization of slow brain waves throughout the cortex of the sleeping brain, in lockstep with bursts of fast brain waves called sleep spindles, takes place during deep or non-rapid eye movement (NREM) sleep. The team reported that the more tau protein older adults had, the less synchronized these brain waves were. This impaired electrical sleep signature may therefore act as a novel biomarker of tau protein in the human brain.

"There is something special about that synchrony," given the consequences of this tau protein disruption of sleep, Walker said. "We believe that the synchronization of these NREM brain waves provides a file-transfer mechanism that shifts memories from a short-term vulnerable reservoir to a more permanent long-term storage site within the brain, protecting those memories and making them safe. But when you lose that synchrony, that file-transfer mechanism becomes corrupt. Those memory packets don't get transferred, as well, so you wake up the next morning with forgetting rather than remembering."

Indeed, last year, Walker and his team demonstrated that synchronization of these brain oscillations helps consolidate memory, that is, hits the "save" button on new memories.

Several years ago, Walker and his colleagues initially showed that a dip in the amplitude of slow wave activity during deep NREM sleep was associated with higher amounts of beta-amyloid in the brain and memory impairment. Combined with these new findings, the results help identify possible biomarkers for later risk of dementia.

"It is increasingly clear that sleep disruption is an underappreciated factor contributing to Alzheimer's disease risk and the decline in memory associated with Alzheimer's," Walker said. "Certainly, there are other contributing factors: genetics, inflammation, blood pressure. All of these appear to increase your risk for Alzheimer's disease. But we are now starting to see a new player in this space, and that new player is called insufficient sleep."

The brain rhythms were recorded over a single eight-hour night in Walker's UC Berkeley sleep lab, during which most of the 31 subjects wore a cap studded with 19 electrodes that recorded a continual electroencephalogram (EEG). All had previously had brain scans to assess their burdens of tau and beta-amyloid that were done using a PET scanner at the Lawrence Berkeley National Laboratory and operated by study co-author William Jagust, professor of public health and a member of Berkeley's Helen Wills Neuroscience Institute.

Is sleep a biomarker for dementia?

Doctors have been searching for early markers of dementia for years, in hopes of intervening to stop the deterioration of the brain. Beta-amyloid and tau proteins are predictive markers, but only recently have they become detectable with expensive PET scans that are not widely accessible.

Yet, while both proteins escalate in the brain in old age and perhaps to a greater extent in those with dementia, it is still unknown why some people with large burdens of amyloid and tau do not develop symptoms of dementia.

"The leading hypothesis, the amyloid cascade hypothesis, is that amyloid is what happens first on the path to Alzheimer's disease. Then, in the presence of amyloid, tau begins to spread throughout the cortex, and if you have too much of that spread of tau, that can lead to impairment and dementia," Winer said.

Walker added that, "A lack of sleep across the lifespan may be one of the first fingers that flicks the domino cascade and contributes to the acceleration of amyloid and tau protein in the brain."

The hypothesis is supported, in part, by Jagust's PET studies, which have shown that higher levels of beta-amyloid and tau protein tangles in the brain are correlated with memory decline, tau more so than amyloid. Tau occurs naturally inside the brain's neurons, helping to stabilize their internal skeleton. With age, tau proteins seem to accumulate inside cells of the medial temporal lobe, including the hippocampus, the seat of short-term memory. Only later do they spread more widely throughout the cortex.

While Jagust has run PET scans on the brains of many healthy people, as well as those with dementia, many more subjects are needed to confirm the relationship between protein tangles and dementias like Alzheimer's disease. Because PET scanners are currently expensive and rare, and because they require injection of radioactive tracers, other biomarkers are needed, Walker said.

The new study suggests that sleep changes detectable in a simple overnight sleep study may be less intrusive biomarkers than a PET scan.

"As wearable technology improves, this need not be something you have to come to a sleep laboratory for," said Walker. "Our hope is that, in the future, a small head device could be worn by people at home and provide all the necessary sleep information we'd need to assess these Alzheimer's disease proteins. We may even be able to track the effectiveness of new drugs aimed at combating these brain proteins by assessing sleep."

"I think the message is very clear," Walker added. "If you are starting to struggle with sleep, then you should go and see your doctor and find ways, such as CBT-I, that can help you improve your sleep. The goal here is to decrease your chances of Alzheimer's disease."

Credit: 
University of California - Berkeley

Horticulture CSI

The summer's annual conference of the American Society for Horticultural Science in Las Vegas, will deliver a variety of crucial issues facing today's world and how the realm of horticulture is addressing them. There is one presentation that holds all the intrigue of a murder mystery and all the painstaking, arduous pursuit of an archeological dig, along with a touch of serendipity.

Gary Bachman, Christine Coker, and Patricia Knight of the Mississippi State University Coastal Research and Extension Center will detail their relevant experiences in Horticulture CSI: Search for the Long Beach Radish https://ashs.confex.com/ashs/2019/meetingapp.cgi/Session/9270.

According to the speakers, this is an instance of solving the mystery of the disappearance, and ultimately the rediscovery, of the Long Beach red radish (LBR). The LBR was a prominent vegetable that very few people know about at all today. Although it holds singular responsibility for securing Long Beach, Mississippi, as a significant economic force in truck cropping in the early 20th century, the Long Beach Red disappeared completely. It was large enough to appear as a red carrot, attractive, and delicious and therefore sought after by distant markets. Each winter up to 300 railroad boxcars were filled with LBR and delivered to the Northern states. The demand was plentiful.

But something happened. Production markets opened up in Florida and other areas, and The Long Beach Red radish was no more. Clues about this peculiar disappearance were scant, and the trail has gone cold. No seed companies carry LBR seeds in the modern age. Extension records yielded no results.

The Long Beach Red radish might still be thought extinct if not for the tenacious efforts of Bachman, Coker and Knight. The result of their efforts might be the restoration of a one-time food staple to its position of glory. Their investigative tale is an inspiration, and well worth a listen.

Bachman adds, "Extension problem solving is really all about listening because sometimes the answer to a problem comes from a very unlikely time or source."

Credit: 
American Society for Horticultural Science

Practice makes perfect

image: A visualization of the Markov chain Monte Carlo algorithm, used for Bayesian analysis, exploring parameter space.

Image: 
Argonne National Laboratory/Noah Paulson

Argonne team combines cutting-edge modeling with 300-year-old statistical analysis technique to enhance material properties.

At some point in your life, you’ve probably had somebody — a parent, a teacher, a mentor — tell you that “the more you practice, the better you become.” The expression is often attributed to Thomas Bayes, an 18th century British minister who was interested in winning at games and formalized this simple observation into a now-famous mathematical expression.

Used to examine behaviors, properties and other mechanisms that constitute a concept or phenomenon, Bayesian analysis employs an array of varied, but similar, data to statistically inform an optimal model of that concept or phenomenon.

“Simply put, Bayesian statistics is a way of starting with our best current understanding and then updating that with new data from experiments or simulations to come up with a better-informed understanding,” said Noah Paulson, a computational materials scientist at the U.S. Department of Energy’s (DOE) Argonne National Laboratory.

The method met with some success over the 300 years since its inception, but it is an idea whose time has finally arrived.

In some fields, like cosmology, researchers have been successfully developing and sharing Bayesian techniques and codes for some time. In others, like materials science, implementation of Bayesian analysis methods is just beginning to pay dividends.

“Simply put, Bayesian statistics is a way of defining something we already understand and then updating that with new data from experiments or simulations to come up with a more accurate understanding.” — Noah Paulson, computational materials scientist, Argonne National Laboratory

Paulson and several Argonne colleagues are applying Bayesian methods to quantify uncertainties in the thermodynamic properties of materials. In other words, they want to determine how much confidence they can place in the data they collect about materials and the mathematical models used to represent those data.

While the statistical techniques are applicable to many fields, the researchers set out to create an optimal model of the thermodynamic properties of hafnium (Hf), a metal emerging as a key component in computer electronics. Results derived from this approach will be published published in the September 2019 issue of the International Journal of Engineering Science.

“We found that we didn’t know all that we could about this material because there were so many datasets and so much conflicting information. So we performed this Bayesian analysis to propose a model that the community can embrace and use in research and application,” said Marius Stan, who leads intelligent materials design in Argonne’s Applied Materials division (AMD) and is a senior fellow at both the University of Chicago’s Consortium for Advanced Science and Engineering and the Northwestern-Argonne Institute for Science and Engineering.

To derive an optimal model of a material’s thermodynamic properties, researchers use some prior knowledge or data related to the subject matter as a starting point.

In this case, the team was looking to define the best models for the enthalpy (the amount of energy in a material) and the specific heat (the heat necessary to increase the temperature of the unit mass of the material by one degree Celsius) of hafnium. Represented as equations and mathematical expressions, the models have different parameters that control them. The goal is to find the optimal parameters.

“We had to start with a guess of what those parameters should be,” said Paulson of AMD’s Thermal and Structural Materials group. “Looking through the literature we found some ranges and values that made sense, so we used those for our prior distribution.”

One of the parameters the researchers explored is the temperature of a crystal’s highest normal mode of vibration. Referred to as the Einstein or Debye temperature, this parameter affects a material’s specific heat.

The prior — or initial — guess is based on existing models, preliminary data or the intuition of experts in the field. Using calibration data from experiments or simulation, Bayesian statistics update that prior knowledge and determine the posterior — the updated understanding of the model. The Bayesian framework can then determine whether new data are in better or worse agreement with the model being tested.

“Like cosmology, materials science must find the optimal model and parameter values that best explain the data and then determine the uncertainties related to these parameters. There’s not much point in having a best-fit parameter value without an error bar,” said team member Elise Jennings, a computational scientist in statistics with the Argonne Leadership Computing Facility (ALCF), a DOEOffice of Science User Facility, and an associate of the Kavli Institute for Cosmological Physics at the University of Chicago.

And that, she said, is the biggest challenge for materials science: a lack of error bars or uncertainties noted in available datasets. The hafnium research, for example, relied on datasets selected from previously published papers, but error ranges were either absent or excluded.

So, in addition to presenting models for the specific thermodynamic properties of hafnium, the article also explores techniques by which materials science and other fields of study can make allowances for datasets that don’t have uncertainties.

“For a scientist or an engineer, this is an important problem,” said Stan. “We’re presenting a better way of evaluating how valuable our information is. We want to know how much trust we can put in the models and the data. And this work reveals a methodology, a better way of evaluating that.”

A paper based on the study, “Bayesian strategies for uncertainty quantification of the thermodynamic properties of materials,” is available online  (June 13) and will appear in the September 2019 edition of the International Journal of Engineering Science. Noah Paulson, Elise Jennings and Marius Stan collaborated on the research.

Credit: 
DOE/Argonne National Laboratory

2015 Nepal earthquake offers clues about hazards

image: Study co-author Marianne Karplus of the University of Texas at El Paso, formerly a graduate student with Klemperer at Stanford, is pictured installing a seismometer in Nepal to record aftershocks of the Gorkha earthquake.

Image: 
Navin Thapa, Tribhuvan University of Kathmandu

The Himalaya Mountains are a geological wonder, drawing adventurers and religious devotees from near and far to the world's highest peaks. The mountains were created along a fault where the Earth's plates crash into each other and press up toward the sky. But the same fault that formed the piercing summits of the Himalayas produces large earthquakes that can cause immense loss of life in the densely populated plains of northern India and southern Nepal. On April 25, 2015, the magnitude 7.8 Gorkha earthquake struck near Kathmandu in central Nepal, killing about 9,000 people and injuring thousands. It damaged or destroyed more than 600,000 buildings in the area and its initial shock and magnitude 7.3 aftershock were felt throughout the region.

Scientists' understanding of the Main Himalayan Thrust geological fault, where the Indian Plate has pushed under the Eurasian Plate along the Himalayas, has been largely based on historical records of earthquakes that occurred before the advent of modern seismometers. The 2015 Gorkha earthquake offered researchers an opportunity for a much-needed update. Seismic data from the Gorkha quake showed that it started to rupture, and also stopped rupturing at two places where the rock types change, adjacent to the fault. The research, led by an international team of scientists and co-authored by Simon Klemperer, a geophysics professor in the School of Earth, Energy & Environmental Sciences (Stanford Earth), appears in Science Advances June 26.

The new information offers clues about where, why and how earthquakes occur, and increases our understanding of earthquake hazards in India and Nepal. As a result of these observations, researchers now want to image the entire 1500-mile-long Himalayan front, where the plates overlap, to determine the shape of the Main Himalayan Thrust and the factors that control the maximum rupture that can occur in different parts of this convergent zone. Klemperer offers his perspective in this Q&A.

What was unique about the 2015 Gorkha earthquake from a research perspective?

KLEMPERER: Although we thought we had a reasonable understanding of Himalayan seismicity, that understanding was based on rather limited data. Gorkha filled a large knowledge gap, though as always leaves more questions unanswered that will probably remain until we see a great, over magnitude 8, earthquake.

What have you learned that could improve our understanding of earthquake hazards in that region?

KLEMPERER: In the past, for lack of data, earthquake seismologists have typically assumed that the Himalaya is uniform - cylindrical or co-axial - along-strike, along the curving arc of the Himalaya from west to east. The rupture pattern of the Gorkha event and our new results strongly imply that the earthquake both started and stopped at significant along-strike (west-east) changes in fault geometry. If in the future we can identify the locations of these significant changes before earthquakes happen, we would have a better idea of where future earthquakes would be triggered, and how large they might be.

The Main Himalayan Thrust transitions from gently sloping at its southern tip to more steeply sloping further north, forming what geologists have called the "Lesser Himalayan Ramp" that concentrates and builds up the stress ultimately released in an earthquake. But the location and tilt angle of this ramp structure cannot be well constrained by surface geology. Our seismic study showed that the ramp of the Main Himalayan Thrust changes from west to east, and is steeper beneath the mainshock area, and flatter and deeper beneath the eastern end of the aftershock zone.

Was there anything surprising about the way this earthquake behaved?

KLEMPERER: Although the Gorkha earthquake started out in an anticipated location, it surprised seismologists by rupturing only to the east-southeast, as opposed to in all directions; and by being too small to be the expected "great" earthquake over magnitude 8, yet still large enough to rupture for over 90 miles, reaching beneath Kathmandu Valley.

What about the geology of this region makes it susceptible to major earthquakes?

KLEMPERER: India is forcing its way beneath the Himalaya at 0.7 inches per year. Along the earthquake fault between the two plates, stress builds up for tens to hundreds of years, then is released in a matter of seconds - in this case moving the ground surface 23 feet southward and 3 feet vertically up.

What are the current methods for monitoring and minimizing the threat of earthquakes in India and Nepal?

KLEMPERER: The Gorkha earthquake was captured by distant and local seismometers, by a dozen global positioning system (GPS) receivers operating near and above the rupture zone and by satellite synthetic aperture radar imagery. All these methods will continue to be available in the future. It was a matter of good fortune that lead author Prof. Ling Bai had deployed a temporary array of seismometers along the Himalaya just north of the Nepali border, otherwise, the number of local seismometers would have been much smaller, as the Nepal national seismographic network is currently sparse and still developing. The best way to minimize the threat is better - and better enforced - building codes.

Credit: 
Stanford's School of Earth, Energy & Environmental Sciences

Is multiple sclerosis linked to childhood viral infections?

image: This image shows a costaining of T cells (cyan) expressing the chemokine CCL5 (yellow), which reside at a site of resolved virus infection (pink).

Image: 
© UNIGE

Although the exact causes of multiple sclerosis still remain unknown, it is assumed that the disease is triggered by a combination of genetic and environmental risk factors. But which? In a mouse model of the disease, researchers at the University of Geneva (UNIGE) and the Geneva University Hospitals (HUG) , Switzerland, studied the potential link between transient cerebral viral infections in early childhood and the development of this cerebral autoimmune disease later in life. Indeed, the brain area affected by viral infection during childhood undergoes a change that can call, a long time later, on the immune system to turn against itself at this precise location, triggering autoimmune lesions. These results, which are published in the journal Science Translational Medicine, provide a first step in answering one of the possible environmental causes of this serious disease.

Multiple sclerosis affects one in 1,000 people in Switzerland, two-thirds of whom are women. It is the most common auto-immune disease affecting the brain. Up to date, there is still neither a cure available, nor a clear understanding of the factors that trigger this disease at around 30 years of age. "We asked ourselves whether brain viral infections that could be contracted in early childhood were among the possible causes," says Doron Merkler, a professor in the Department of Pathology and Immunology in UNIGE's Faculty of Medicine and senior consultant in the Clinical Pathology Service of the HUG. Such transient brain infections can be controlled quickly by the immune system, without the affected individual even noticing any symptoms. "But these transient infections may, under certain circumstances, leave a local footprint, an inflammatory signature, in the brain," continues the researcher.

The childhood: a pivotal moment influencing disease risk

The scientists induced a transient viral infection in a group of adult mice and in a group of mice at a very young age in order to test this hypothesis. Karin Steinbach, a researcher in the same department, explains: "In both cases, the mice showed no signs of the disease and eliminated the infection within a week with a similar anti-viral immune response."

The scientists then allowed the two groups of mice to grow older before they were transferred with self-reactive cells, which can target the normal brain structure and are also thought to contribute to the illness of patients with multiple sclerosis. "These self-reactive cells are present in most of us, but do not necessarily induce a disease, since they are controlled by different regulatory mechanisms and usually don't have access to the brain," explains Karin Steinbach. Indeed, in the group of mice infected with the virus in adulthood, the transferred self-reactive cells did not gain access to the brain and no brain lesions were observed. However, in those mice that had been infected at a very young age, the self-reactive cells gained access to the brain in adulthood, and migrated to the precise location where the infection had previously occurred. As a result, self-reactive cells started to attack the brain structure in these areas, leading to the development of brain lesions. Why was there such a difference depending on the age at which the mice suffered a prior viral infection?

An accumulation of T cells gives the signal

During their analysis of the brains in the cohort of mice that had overcome the viral infection at a very young age, the researchers observed an accumulation of a sub-type of immune cells: so-called "brain-resident memory T cells". "Under normal circumstances, these cells are distributed throughout the brain, ready to protect it in case of a viral attack. But here, the cells accumulate in surplus at the exact spot of the infantile infection in the brain," says Professor Merkler. The researchers subsequently found that these cells produced a molecule that specifically attracts the self-reactive cells, allowing them to access the brain and to cause auto-immune brain lesions. "In order to verify this observation," continues the professor, "we blocked the receptor that transmits the signal to the self-reactive cells. Indeed, the mice were then protected from developing brain lesions!"

A similar phenomenon also occurs in humans

"We then looked to see if we could find a similar accumulation of brain-resident memory T cells that produce this molecule in people with multiple sclerosis, and indeed we did", says Karin Steinbach. By analogy, the scientists suggest self-reactive T cells in humans could gain access to the brain by a similar mechanism as observed in mice, something that requires future studies to elaborate on.

"We are continuing our research in this direction. We particularly want to understand why brain-resident memory T cells accumulate in these discrete spots in a child's brain following infection but not in adulthood," concludes Karin Steinbach. In the future, the knowledge gained from these studies may help us understand better the possible causes of multiple sclerosis.

Credit: 
Université de Genève