A new glue, says Stewart, a bioengineer at the University of Utah in Salt Lake City, has passed toxicity studies in cell culture. It is at least as strong as Super Glue and is twice as strong as the natural adhesive it mimics, he notes.
"We recognized that the mechanism used by the sandcastle worm is really a perfect vehicle for producing an underwater adhesive," Stewart said. "This glue, just like the worm's glue, is a fluid material that, although it doesn't mix with water, is water soluble."
Stewart has begun pilot studies focused on delivering bioactive molecules in the adhesive that could allow it to fix bone fragments and deliver medicines to the fracture site, such as antibiotics, pain relievers or compounds that might accelerate healing.
"We are very optimistic about this synthetic glue," he said. "Biocompatibility is one of the major challenges of creating an adhesive like this. Anytime you put something synthetic into the body, there's a chance the body will respond to it and damage the surrounding tissue. That's something we will monitor, but we've seen no indication right now that it will be a problem."
Watch a narrated video of the sandcastle worm building a home in a lab using bits of silicon.
(Photo Credit: Russell Stewart)
Russell Stewart's adhesive glues together submerged pieces of bone. Watch a narrated video of the adhesive at work.
(Photo Credit: Russell Stewart)
The sandcastle worm makes a protective home out of beads of zirconium oxide in a lab. At the University of Utah, scientists have created a synthetic version of this glue for possible use in repairing fractured bones.
(Photo Credit: Fred Hayes)
Source: American Chemical Society