ESA's Herschel space telescope can be used to study such regions in detail, but only Planck can find them all over the sky. Launched together in May 2009, Planck and Herschel are both studying the coolest components of the Universe. Planck looks at large structures, while Herschel can make detailed observations of smaller structures, such as nearby star-forming regions.
One puzzle to be solved is why there is similar filamentary structure on both the large and the small scale. "That's a big question," says Tauber.
The new image is a combination of data taken with Planck's High Frequency Instrument (HFI), at wavelengths of 540 micrometres and 350 micrometres, and a 100-micrometre image taken in 1983 with the IRAS satellite.
The HFI data were recorded as part of Planck's first all-sky survey at microwave wavelengths. As the spacecraft rotates, its instruments sweep across the sky. During every rotation, they cross the Milky Way twice. Thus, in the course of Planck's mission to precisely map the afterglow of the big bang, it is also producing exquisite maps of the Galaxy.
Planck will scan the entire sky to build the most accurate map ever of the Cosmic Microwave Background, the relic radiation from the Big Bang. The spacecraft will spin at 1 rotation per minute around an axis offset by about 85° so that the observed sky region will trace a large circle on the sky. As the spin axis follows the Sun the circle observed by the instruments sweeps through the sky at a rate of 1° per day. Planck will take about 6 months to complete a full scan of the sky, allowing the creation of two complete sky maps during the nominal mission lifetime (about 15 months).
(Photo Credit: ESA (animation by C. Carreau))
The image spans about 50° of the sky. It is a three-color combination constructed from Planck's two highest frequency channels (557 and 857 GHz, corresponding to wavelengths of 540 and 350 micrometers), and an image at the shorter wavelength of 100 micrometers made by the IRAS satellite. This combination visualises dust temperature very effectively: red corresponds to temperatures as cold as 10° above absolute zero, and white to those of a few tens of degrees. Overall, the image shows local dust structures within 500 light-years of the sun.
(Photo Credit: ESA and the HFI Consortium, IRAS)
Source: European Space Agency