Organic light-emitting diodes become brighter and more durable: layers made as ultrastable glasses improve device performance

Organic light-emitting diodes (OLEDs) truly have matured enough to allow for first commercial products in the form of small and large displays. In order to compete in further markets and even open new possibilities (automotive lighting, head-mounted-displays, micro displays, etc.), OLEDs need to see further improvements in device lifetime while operating at their best possible efficiency. Currently, intrinsic performance progress is solely driven by material development.

Now, researchers from the Universitat Autònoma de Barcelona and Technische Universität Dresden have demonstrated the possibility of using ultrastable film formation to improve the performance of state-of-the-art OLEDs. In their joint paper published in Science Advances with the title 'High-performance organic light-emitting diodes comprising ultrastable glass layers', the researchers show in a detailed study that significant increases of efficiency and operational stability (> 15% for both parameters and all cases, significantly higher for individual samples) are achieved for four different phosphorescent emitters. To achieve these results, the emission layers of the respective OLEDs were grown as ultrastable glasses - a growth condition that allows for thermodynamically most stable amorphous solids.

Illustration summarizing the nanoscale difference of ultrastable glasses compared to conventional ones and the impact on the layer and device properties of organic light-emitting diodes (OLEDs). This finding is significant, because it is an optimization which involves neither a change of materials used nor changes to the device architecture. Both are the typical starting points for improvements in the field of OLEDs. This concept can be universally explored in every given specific OLED stack, which will be equally appreciated by leading industry. This in particular includes thermally activated delayed fluorescence (TADF) OLEDs, which are seeing tremendous research and development interest at the moment. Furthermore, the improvements that, as shown by the researchers, can be tracked back to differences in the exciton dynamics on the nanoscale suggest that other fundamental properties of organic semiconductors (e.g. transport, charge separation, energy transfer) can also be equally affected.

The research leading to these results was partly carried out in the project 'Modelling stability of organic phosphorescent light-emitting diodes (MOSTOPHOS)' funded by the European Union's Horizon 2020 research and innovation programme (grant agreement no. 646259). Currently, this concept is being explored together with cynora GmbH, a MOSTOPHOS partner and a world-leading company in development of TADF emitters.

Credit: 
Technische Universität Dresden