The subject of 'gas bubbles in liquids' has many applications in industry. Examples include separating oil from water in the oil industry, how ink drops behave in printers and the manufacture of products in the food industry, such as mayonnaise. 'This subject of course also applies to natural processes such as rainfall and boiling water,' PhD student Jok Tang adds.
Experiments
Industry benefits from knowing how a current with bubbles behaves. This knowledge enables production processes to be improved. Until now, in spite of ever more powerful computers, it has proved difficult to calculate the behaviour of currents with bubbles properly. Computers required too much time to solve the corresponding mathematical equations.
To gain insight into current behaviour, scientists generally conduct small-scale experiments. 'But,' Tang says, 'these experiments are expensive and difficult to perform.'
Quick
'We believe that our method will be adopted by industry in the not too distant future. Not just because the need for this method becomes greater when calculating larger-scale problems, but mainly because it is quicker and cheaper than the methods used now,' Tang explains.
Source: Delft University of Technology