Researchers from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences and Tsinghua University (THU) proved a sandwiched superstructure for graphene oxide (GO) that transport inside cell membranes for the first time.

The discovery, published in Science Advances, opens up a membrane-specific drug delivery mode, which could significantly improve cytotoxicity effects over traditional drug carriers.

DALLAS (SMU) - Researchers at SMU's Center for Drug Discovery, Design and Delivery (CD4) have succeeded in lab testing the use of chemotherapy with a specific protein inhibitor so that the chemotherapeutic is better absorbed by drug-resistant cancer cells without harming healthy cells. The approach could pave the way for a more effective way to treat cancers that are resistant to treatment.

Although the knowledge we have about human cells and tissues has steadily increased over recent decades, many things remain unknown. For instance, cells exist in transient, dynamic states and understanding them is fundamental to decipher diseases and find cures. Classic techniques used in the lab to study cell types faced limitations and did not enable a finely detailed profile of cell function.

Older forests in eastern North America are less vulnerable to climate change than younger forests - particularly for carbon storage, timber production, and biodiversity - new University of Vermont research finds.

This striking image was taken by the NASA/ESA Hubble Space Telescope's Wide Field Camera 3 (WFC3), a powerful instrument installed on the telescope in 2009. WFC3 is responsible for many of Hubble's most breathtaking and iconic photographs.

UPTON, NY--Scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources. The catalyst, described in the Journal of the American Chemical Society, steers the electro-oxidation of ethanol down an ideal chemical pathway that releases the liquid fuel's full potential of stored energy.

GAINESVILLE, Fla. --- Deborah Matthews hunts for plume moths in darkness, waiting for the halo of her headlamp to catch a brief flicker. About the size of mosquitoes, the delicate, feathery moths fly only a few feet at a time. Matthews must watch for that short flight while keeping clear of poisonwood, cracks in the limestone and sinkholes, common hazards of fieldwork in the Bahamas.

DURHAM, N.C. -- Scientists have discovered a small molecule drug that may stop cancer cells from becoming resistant to chemotherapy. Drug resistance is a major cause of cancer relapse and is responsible for as much as 90% of deaths related to the disease.

The new compound, which was tested in an animal model of melanoma, could make current chemotherapies more powerful. It works by thwarting cancer's ability to survive, evolve, and adapt to the DNA damage created by traditional chemotherapy drugs like cisplatin.

Whether Harry Potter's invisibility cloak, which perfectly steers light waves around objects to make them invisible, will ever become reality remains to be seen, but perfecting a more crucial cloak is impossible, a new study says. It would have perfectly steered stress waves in the ground, like those emanating from a blast, around objects like buildings to make them "untouchable."

Organisms on this planet, including human beings, exhibit a biological rhythm that repeats about every 24 h to adapt to the daily environmental alteration caused by the rotation of the earth. This circadian rhythm is regulated by a set of biomolecules working as a biological clock. In cyanobacteria (or blue-green algae), the circadian rhythm is controlled by the assembly and disassembly of three clock proteins, namely, KaiA, KaiB, and KaiC.