NASA's MESSENGER spacecraft, which is toting an $8.7 million University of Colorado at Boulder instrument to measure Mercury's wispy atmosphere and blistering surface, will make its second flyby of the mysterious, rocky planet Oct. 6.

Astronomers may have discovered the relative of a freakishly behaving exploding star once thought to be the only one of its kind.

For more than two decades, astronomers have intensively studied supernova 1987A, an exploding star that had behaved like no other. Instead of growing dimmer with time, 1987A has grown brighter at X-ray and radio wavelengths.

A team of astronomers that includes the University of Chicago's Vikram Dwarkadas is asking if supernova 1996cr, discovered by Columbia University's Franz Bauer, is actually the "wild cousin" of supernova 1987A.

One of the nearest supernovas in the last 25 years has been identified over a decade after it exploded. This result was made possible by combining data from the vast online archives from many of the world's premier telescopes.

The supernova, called SN 1996cr, was first singled out in 2001 by Franz Bauer. Bauer noticed a bright, variable source in the Circinus spiral galaxy, using NASA's Chandra X-ray Observatory. Although the source displayed some exceptional properties Bauer and his Penn State colleagues could not identify its nature confidently at the time.

Two terrestrial planets orbiting a mature sun-like star some 300 light-years from Earth recently suffered a violent collision, astronomers at UCLA, Tennessee State University and the California Institute of Technology will report in a December issue of the Astrophysical Journal, the premier journal of astronomy and astrophysics.

WASHINGTON -- NASA's Swift satellite has found the most distant gamma-ray burst ever detected. The blast, designated GRB 080913, arose from an exploding star 12.8 billion light-years away.

"This is the most amazing burst Swift has seen," said the mission's lead scientist Neil Gehrels at NASA's Goddard Space Flight Center in Greenbelt, Md. "It's coming to us from near the edge of the visible universe."

New, very precise measurements have shown that the rotation of the Milky Way is simpler than previously thought. A remarkable result from the most successful ESO instrument HARPS, shows that a much debated, apparent 'fall' of neighbourhood Cepheid stars towards our Sun stems from an intrinsic property of the Cepheids themselves.

The result, obtained by a group of astrophysicists led by Nicolas Nardetto, will soon appear in the journal Astronomy & Astrophysics.

Theoretical models of stellar formation propose the existence of very massive stars that can attain up to 150 times the mass of our Sun.

Until very recently, however, no scientist had discovered a star of more than 83 solar masses. Now an international team of astrophysicists, led by Université de Montréal researchers from the Centre de recherche en astrophysique du Québec (CRAQ), has found and "weighed" the most massive star to date.

The PRIMA instrument [1] of the ESO Very Large Telescope Interferometer (VLTI) recently saw "first light" at its new home atop Cerro Paranal in Chile. When fully operational, PRIMA will boost the capabilities of the VLTI to see sources much fainter than any previous interferometers, and enable astrometric precision unmatched by any other existing astronomical facility. PRIMA will be a unique tool for the detection of exoplanets.

(Boston) – Boston University's Center for Space Physics (CSP) announced today that it will participate in NASA's next mission to Mars to study the planets atmosphere and climate history – particularly the history of water on the planet.

MADISON — Chemical clues from a comet's halo are challenging common views about the history and evolution of the solar system and showing it may be more mixed-up than previously thought.

A team led by a Yale University astronomer has discovered the least luminous, most dark matter-filled galaxy known to exist.

The galaxy, called Segue 1, is one of about two dozen small satellite galaxies orbiting our own Milky Way galaxy. The ultra-faint galaxy is a billion times less bright than the Milky Way, according to the team's results, to be published in an upcoming issue of The Astrophysical Journal (ApJ).

Scientists at Durham University have found the "missing link" between small and super-massive black holes.

For the first time the researchers have discovered that a strong X-ray pulse is emitting from a giant black hole in a galaxy 500 million light years from Earth.

The pulse has been created by gas being sucked by gravity on to the black hole at the centre of the REJ1034+396 galaxy.

A long-standing scientific belief holds that stars tend to hang out in the same general part of a galaxy where they originally formed. Some astrophysicists have recently questioned whether that is true, and now new simulations show that, at least in galaxies similar to our own Milky Way, stars such as the sun can migrate great distances.

There appears to be an upper limit to how big the universe's most massive black holes can get, according to new research led by a Yale University astrophysicist.