Heavens

Based on the outstanding success of the first tandem mission between ERS-2 and Envisat last year, ESA has paired the two satellites together again to help improve our understanding of the planet.

ERS-2, ESA's veteran spacecraft, and Envisat, the largest environmental satellite ever built, both carry Synthetic Aperture Radar (SAR) instruments that provide high resolution images of the Earth's surface.

Astronomers have uncovered strong evidence that brown dwarfs form like stars. Using the Smithsonian's Submillimeter Array (SMA), they detected molecules of carbon monoxide shooting outward from the object known as ISO-Oph 102. Such molecular outflows typically are seen coming from young stars or protostars. However, this object has an estimated mass of 60 Jupiters, meaning it is too small to be a star. Astronomers have classified it as a brown dwarf.

Sparkling away at magnitude 3.7 and appearing nearly as large as the full moon on the southern night sky, Omega Centauri is visible with the unaided eye from a clear, dark observing site. Even through a modest amateur telescope, the cluster is revealed as an incredible, densely packed sphere of glittering stars. But astronomers need to use the full power of professional telescopes to uncover the amazing secrets of this beautiful globular cluster.

The Indian Space Research Organisation's lunar orbiter Chandrayaan-1 released a probe that impacted close to the lunar south pole on 14 November. Following this, the instruments on the spacecraft are being switched on to get the science observations started.

Berkeley -- Jupiter has a rocky core that is more than twice as large as previously thought, according to computer calculations by a University of California, Berkeley, geophysicist who simulated conditions inside the planet on the scale of individual hydrogen and helium atoms.

The results were published Nov. 20 in Astrophysical Journal Letters.

The image shows a pair of colossal stars, WR 25 and Tr16-244, located within the open cluster Trumpler 16. This cluster is embedded within the Carina Nebula, an immense cauldron of gas and dust that lies approximately 7500 light-years from Earth. The Carina Nebula contains several ultra-hot stars, including these two star systems and the famous blue star Eta Carinae, which has the highest luminosity yet confirmed. As well as producing incredible amounts of heat, these stars are also very bright, emitting most of their radiation in the ultraviolet and appearing blue in colour.

Astronomers at The University of Nottingham have identified a type of galaxy that could be the missing link in our understanding of galaxy evolution.

The STAGES study led by the University's Centre for Astronomy and Particle Theory examines galaxy evolution using images from the Hubble Space Telescope. A separate project — Galaxy Zoo — uses volunteers from the general public to classify galaxies. Both teams have identified a population of unusual red spiral galaxies that are setting out on the road to retirement after a lifetime of forming stars.

The Indian Space Research Organisation's lunar orbiter Chandrayaan-1 released a probe that impacted close to the lunar south pole on 14 November. Following this, the instruments on the spacecraft are being switched on to get the science observations started.

Something vital is missing in the far distant reaches of the Universe: hydrogen - the raw material for stars, planets and possible life.

The discovery of its apparent absence from distant galaxies by a teamof Australian astronomers is puzzling because hydrogen gas is the mostcommon constituent of normal matter in the Universe.

If anything, hydrogen was expected to be more abundant so early in thelife of the Universe because it had not yet been consumed by theformation of all the stars and galaxies we know today.

A Los Alamos National Laboratory cosmic-ray observatory has seen for the first time two distinct hot spots that appear to be bombarding Earth with an excess of cosmic rays. The research calls into question nearly a century of understanding about galactic magnetic fields near our solar system.

Joining an international team of collaborators, Los Alamos researchers Brenda Dingus, Gus Sinnis, Gary Walker, Petra Hüntemeyer and John Pretz published the findings today in Physical Review Letters.

PITTSBURGH—The bright pinwheels and broad star sweeps iconic of disk galaxies such as the Milky Way might all be the shrapnel from massive, violent collisions with other galaxies and galaxy-size chunks of dark matter, according to a multi-institutional project involving the University of Pittsburgh. Published in the Nov. 20 edition of The Astrophysical Journal, the findings challenge the longstanding theory that the bright extensions and rings surrounding galaxies are the remnants of smaller star clusters that struck a larger, primary galaxy then fragmented.

The hot star Beta Pictoris is one of the best-known examples of stars surrounded by a dusty 'debris' disc. Debris discs are composed of dust resulting from collisions among larger bodies like planetary embryos or asteroids. They are a bigger version of the zodiacal dust in our Solar System. Its disc was the first to be imaged — as early as 1984 — and remains the best-studied system. Earlier observations showed a warp of the disc, a secondary inclined disc and infalling comets onto the star.

A new report from the National Research Council, LAUNCHING SCIENCE: SCIENCE OPPORTUNITIES PROVIDED BY NASA'S CONSTELLATION PROGRAM, reviews science missions that would be uniquely suited to the new Constellation system of spacecraft being developed by NASA for human space exploration beyond low Earth orbit. The report evaluates 17 science mission concepts based on their potential to significantly advance a scientific field and therefore benefit from inclusion in the Constellation program.

The explosion of a binary star inside a planetary nebula has been captured by a team led by UCL (University College London) researchers – an event that has not been witnessed for more than 100 years. The study, published in Astrophysical Journal Letters, predicts that the combined mass of the two stars in the system may be high enough for the stars to eventually spiral into each other, triggering a much bigger supernova explosion.

ANN ARBOR, Mich.---The powerful black holes at the center of massive galaxies and galaxy clusters act as hearts to the systems, pumping energy out at regular intervals to regulate the growth of the black holes themselves, as well as star formation, according to new data from NASA's Chandra X-Ray Observatory.

Scientists from the University of Michigan, the Max-Planck Institute for Extraterrestrial Physics in Germany, the University of Maryland, Baltimore County (UMBC), the Harvard-Smithsonian Center for Astrophysics and Jacobs University in Germany contributed to the results.