Heavens

An international team of researchers has detected gas containing oxygen in a galaxy 13.1 billion light years from Earth, providing a glimpse into what the universe was like in ancient times, reports a new study published in this week's Science.

The supermassive black holes found at the centre of every galaxy, including our own Milky Way, may, on average, be smaller than we thought, according to work led by University of Southampton astronomer Dr Francesco Shankar.

If he and his colleagues are right, then the gravitational waves produced when they merge will be harder to detect than previously assumed. The international team of scientists published their results in Monthly Notices of the Royal Astronomical Society.

On Dec. 26, 2015 at 03:38:53 UTC, scientists observed gravitational waves -- ripples in the fabric of spacetime -- for the second time.

The gravitational waves were detected by both of the twin Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington.

COLUMBIA, Mo. - Every year, more than 23,000 youth leave foster care after turning 18 and begin adulthood. Unlike their peers who can depend on family who serve as support systems, those coming out of foster care have to be more self-sufficient and often face elevated risks of homelessness and poverty. Clark Peters, assistant professor in the School of Social Work at the University of Missouri, says youth in foster care need not only financial education but guidance as they grow their experience obtaining and managing money to successfully navigate the path to adulthood.

Astronomers from Japan, Sweden, the United Kingdom and ESO have used the Atacama Large Millimeter/submillimeter Array (ALMA to observe one of the most distant galaxies known. SXDF-NB1006-2 lies at a redshift of 7.2, meaning that we see it only 700 million years after the Big Bang.

On December 26, 2015 at 03:38:53 UTC, scientists observed gravitational waves--ripples in the fabric of spacetime--for the second time.

The gravitational waves were detected by both of the twin Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington, USA.

On December 26, 2015, at 03:38:53 UTC, scientists observed gravitational waves--ripples in the fabric of spacetime--for the second time.

Both of the twin Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors--located in Livingston, Louisiana, and Hanford, Washington--detected the gravitational wave event, named GW151226. The LIGO Scientific Collaboration (LSC) and the Virgo Collaboration used data from the twin LIGO detectors to make the discovery, which is accepted for publication in the journal Physical Review Letters.

The homologous temperature of a crystalline material is defined as the ratio between temperature and the melting (solidus) temperature (Tm) in Kelvin. Because Tm of a crystalline material is controlled by the bonding force between atoms, T/Tm has been widely used to compare the creep strength of crystalline materials. As the most abundant mineral in the upper mantle, olivine is the solid solution of forsterite (Mg2SiO4) and fayalite (Fe2SiO4).

Researchers from the Universities of Bristol and Exeter are one step closer to developing a new generation of low-cost, high-efficiency solar cells. The structure is one of the world's first examples of a tri-layer metasurface absorber using a carbon interlayer.

The system, developed by Chenglong Wang a PhD student in Professor Martin Cryan's research group, uses amorphous carbon as an inter-layer between thin gold films with the upper film patterned with a 2D periodic array using focused ion beam etching.

HANOVER, N.H. - Using the power of the light around us, Dartmouth College researchers have significantly improved their innovative light-sensing system that tracks a person's behavior continuously and unobtrusively in real time.

The eight scientists from the Johns Hopkins Henry A. Rowland Department of Physics and Astronomy had already started making calculations when the discovery by the Laser Interferometer Gravitational-Wave Observatory (LIGO) was announced in February. Their results, published recently in Physical Review Letters, unfold as a hypothesis suggesting a solution for an abiding mystery in astrophysics.

An ancient space rock discovered in a Swedish quarry is a type of meteorite never before found on Earth, scientists reported June 14 in the journal Nature Communications.

"In our entire civilization, we have collected over 50,000 meteorites, and no one has seen anything like this one before," said study co-author Qing-zhu Yin, professor of geochemistry and planetary sciences at the University of California, Davis. "Discovering a new type of meteorite is very, very exciting."

Gravitational waves from a second pair of colliding black holes has validated the landmark discovery from earlier this year that confirmed Einstein's general theory of relativity. Rochester Institute of Technology scientists contributed to the initial breakthrough and to the second discovery announced today by the Laser Interferometer Gravitational-wave Observatory.

The new window onto the universe just opened a little bit wider. For the second time in history, an international team of scientists and engineers, including Northwestern University astrophysicists and a laser scientist, has detected gravitational waves -- ripples in the fabric of spacetime -- and a pair of colliding black holes.

Northwestern University astrophysicists have predicted history. In a new study, the scientists show their theoretical predictions last year were correct: The historic merger of two massive black holes detected Sept. 14, 2015, could easily have been formed through dynamic interactions in the star-dense core of an old globular cluster.