Heavens

As temperatures warm, plants release gases that help form clouds and cool the atmosphere, according to research from IIASA and the University of Helsinki.

The new study, published in Nature Geoscience, identified a negative feedback loop in which higher temperatures lead to an increase in concentrations of natural aerosols that have a cooling effect on the atmosphere.

"Plants, by reacting to changes in temperature, also moderate these changes," says IIASA and University of Helsinki researcher Pauli Paasonen, who led the study.

A University of Washington astronomer is using Earth's interstellar neighbors to learn the nature of certain stars too far away to be directly measured or observed, and the planets they may host.

"Characterization by proxy" is the technique used by Sarah Ballard, a post-doctoral researcher at the UW, to infer the properties of small, relatively cool stars too distant for measurement, by comparing them to closer stars that now can be directly observed.

Boston, MA April 25, 2013 - Research recently presented at the Federation of American Societies for Experimental Biology conference in Boston, MA shows that resistant starch content of potatoes is similar across potato varieties; but can be altered significantly by the cooking and serving methods. Resistant starch is starch that is resistant to enzymatic digestion and, thus, is not absorbed in the small intestine.

You are walking down the street with a friend. A shot is fired. The two of you duck behind the nearest cover and you pull out your smartphone. A map of the neighborhood pops up on its screen with a large red arrow pointing in the direction the shot came from.

A NASA-funded sounding rocket mission will launch from an atoll in the Pacific in the next few weeks to help scientists better understand and predict the electrical storms in Earth's upper atmosphere These storms can interfere with satellite communication and global positioning signals.

The mission, called EVEX, for the Equatorial Vortex Experiment, will launch two rockets for a twelve-minute journey through the equatorial ionosphere above the South Pacific. The launch window for the mission from the Kwajalein Atoll in the Marshall Islands is from April 27 to May 10, 2013.

An international team has discovered an exotic double object that consists of a tiny, but unusually heavy neutron star that spins 25 times each second, orbited every two and a half hours by a white dwarf star. The neutron star is a pulsar that is giving off radio waves that can be picked up on Earth by radio telescopes. Although this unusual pair is very interesting in its own right it is also a unique laboratory for testing the limits of physical theories.

A strange stellar pair nearly 7,000 light-years from Earth has provided physicists with a unique cosmic laboratory for studying the nature of gravity. The extremely strong gravity of a massive neutron star in orbit with a companion white dwarf star puts competing theories of gravity to a test more stringent than any available before.

Once again, Albert Einstein's General Theory of Relativity, published in 1915, comes out on top.

TORONTO, ON – An international team of astronomers and an exotic pair of binary stars have proved that Albert Einstein's theory of relativity is still right, even in the most extreme conditions tested yet. The results of their research are described in the April 26 issue of Science.

On the night of April 24 and the morning of April 25, 2013, the sun erupted with two coronal mass ejections (CMEs), solar phenomena that can send billions of tons of solar particles into space that can affect electronic systems in satellites. Experimental NASA research models show that the first CME began at 9:30 p.m. EDT on April 24. The second CME began at 5:24 a.m. EDT on April 25. Both left the sun traveling at about 500 miles per second and they are headed in the direction of planet Mercury.

When galaxies form new stars, they sometimes do so in frantic episodes of activity known as starbursts. These events were commonplace in the early Universe, but are rarer in nearby galaxies.

During these bursts, hundreds of millions of stars are born, and their combined effect can drive a powerful wind that travels out of the galaxy. These winds were known to affect their host galaxy -- but this new research now shows that they have a significantly greater effect than previously thought.

Astronomers have released a new image of the outer atmosphere of Betelgeuse – one of the nearest red supergiants to Earth – revealing the detailed structure of the matter being thrown off the star.

The new image, taken by the e-MERLIN radio telescope array operated from the Jodrell Bank Observatory in Cheshire, also shows regions of surprisingly hot gas in the star's outer atmosphere and a cooler arc of gas weighing almost as much as the Earth.

Because it has no source of energy, a dead star — known as a white dwarf — will eventually cool down and fade away. But circumstantial evidence suggests that white dwarfs can still support habitable planets, says Prof. Dan Maoz of Tel Aviv University's School of Physics and Astronomy.

Pasadena, CA.— Blazars are the brightest of active galactic nuclei, and many emit very high-energy gamma rays. New observations of a blazar known as PKS 1424+240 show that it is the most-distant known source of very high-energy gamma rays. But its emission spectrum appears highly unusual.

Astronomers have found a galaxy turning gas into stars with almost 100 percent efficiency, a rare phase of galaxy evolution that is the most extreme yet observed. The findings come from the IRAM Plateau de Bure interferometer in the French Alps, NASA's Wide-field Infrared Survey Explorer and NASA's Hubble Space Telescope.

COLLEGE PARK, MD - The NASA Hubble Space Telescope has given astronomers their clearest view yet of Comet ISON, a newly-discovered sun grazer comet that may light up the sky later this year, or come so close to the Sun that it disintegrates. A University of Maryland-led research team is closely following ISON, which offers a rare opportunity to witness a comet's evolution as it makes its first-ever journey through the inner solar system.