Heavens

They combined auxin-inducible "protein knockdown" with a synthetic antibody to not only observe fluorescent proteins in living cells but also to rapidly remove them in a temporally controlled manner.

Astronomers have identified some of the earliest galaxies in the Universe.

The team from the Institute for Computational Cosmology at Durham University and the Harvard-Smithsonian Center for Astrophysics, has found evidence that the faintest satellite galaxies orbiting our own Milky Way galaxy are amongst the very first galaxies that formed in our Universe.

Washington, DC--Blue diamonds--like the world-famous Hope Diamond at the National Museum of Natural History--formed up to four times deeper in the Earth's mantle than most other diamonds, according to new work published on the cover of Nature.

"These so-called type IIb diamonds are tremendously valuable, making them hard to get access to for scientific research purposes," explained lead author Evan Smith of the Gemological Institute of America, adding, "and it is very rare to find one that contains inclusions, which are tiny mineral crystals trapped inside the diamond."

Scientists have identified a group of planets outside our solar system where the same chemical conditions that may have led to life on Earth exist.

The researchers, from the University of Cambridge and the Medical Research Council Laboratory of Molecular Biology (MRC LMB), found that the chances for life to develop on the surface of a rocky planet like Earth are connected to the type and strength of light given off by its host star.

Providing resolution to a decades-long debate over whether liquid water is present on Mars, researchers using radar to probe the planet's polar ice caps have detected a lake of liquid water under the Martian ice. It stretches 20 kilometers across, they say. The detection was made using the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument on the Mars Express spacecraft. MARSIS sends radar pulses that penetrate the surface and ice caps of the planet, then measures how the radio waves propagate and reflect back to the spacecraft.

While the moon is uninhabitable today, there could have been life on its surface in the distant past.

In fact, there may have been two early windows of habitability for Earth’s moon, according to a study online today in the journal Astrobiology by Dirk Schulze-Makuch, a Washington State University astrobiologist.

Twelve new moons orbiting Jupiter have been found—11 “normal” outer moons, and one that they’re calling an “oddball.” This brings Jupiter’s total number of known moons to a whopping 79—the most of any planet in our Solar System.

A team led by Carnegie’s Scott S. Sheppard first spotted the moons in the spring of 2017 while they were looking for very distant Solar System objects as part of the hunt for a possible massive planet far beyond Pluto.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical compounds or for biomolecules in solution and is therefore of great industrial importance. In this reaction, charged particles encounter molecules and one molecular group is replaced by another. For a long time, science has been trying to reproduce these processes at the interface of chemistry and physics in the laboratory and to understand them at the atomic level.

Uranus was hit by a massive object roughly twice the size of Earth that caused the planet to tilt and could explain its freezing temperatures, according to new research.

Astronomers at Durham University, UK, led an international team of experts to investigate how Uranus came to be tilted on its side and what consequences a giant impact would have had on the planet's evolution.

The team ran the first high-resolution computer simulations of different massive collisions with the ice giant to try to work out how the planet evolved.

Among the most studied protein machines in history, mTORC1 has long been known to sense whether a cell has enough energy to build the proteins it needs to multiply as part of growth. Because faulty versions of mTORC1 contribute to the abnormal growth seen in cancer, drugs targeting the complex have been the subject of 1,300 clinical trials since 1970.

Now a new study finds that mTORC1 has a second function of profound importance: controlling how "crowded" human cells become.

RIVERSIDE, Calif. (http://www.ucr.edu) -- Earth's first complex animals were an eclectic bunch that lived in the shallow oceans between 580-540 million years ago.

The iconic Dickinsonia -- large flat animals with a quilt-like appearance -- were joined by tube-shaped organisms, frond-like creatures that looked more like plants, and several dozen other varieties already characterized by scientists.

Add to that list two new animals discovered by a UC Riverside-led team of researchers:

Halocynthia roretzi is a solitary ascidian, whose body is entirely covered with the tissue called the 'tunic'. While the tunic has cellulose Iβ, chitin sulfate-like polysaccharide, blood vessels, nerve cells and hemocytes, it also has the components contributing to mechanical properties, including α-smooth muscle actin. The previous reports indicated that the tunic of Halocynthia roretzi responded to mechanical stimuli and deformed itself. In this study, the mechanism of responding the mechanical stimuli in the tunic was investigated.

A team of scientists led by University of Hawai'i at Manoa (UH Mānoa) School of Ocean and Earth Science and Technology (SOEST) researcher Hope Ishii, discovered that certain interplanetary dust particles (IDPs) contain dust leftover from the initial formation of the solar system.

Note: This press release was adapted from an original release by the University of Hawaii at Manoa in Honolulu.

Experiments conducted at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) helped to confirm that samples of interplanetary particles - collected from Earth's upper atmosphere and believed to originate from comets - contain dust leftover from the initial formation of the solar system.

A new study by the University of Liverpool, in collaboration with the Universities of Lancaster and Oslo, sheds light on a longstanding question that has puzzled earth scientists.

Using previously unavailable data, researchers confirm a correlation between the movement of plate tectonics on the Earth's surface, the flow of mantle above the Earth's core and the rate of reversal of the Earth's magnetic field which has long been hypothesised.