Heavens

People have evolved to have subconscious urges to over-eat, and limited ability to avoid becoming obese, especially in winter, a University of Exeter study has found.

There is not yet an evolutionary mechanism to help us overcome the lure of sweet, fatty and unhealthy food and avoid becoming overweight for understandable and sensible reasons, according to researchers.

(San Antonio, Jan. 6, 2016) -- A team of researchers led by Eric Schlegel, Vaughn Family Endowed Professor in Physics at The University of Texas at San Antonio (UTSA), has discovered a powerful galactic blast produced by a giant black hole about 26 million light years from Earth. The black hole is the nearest supermassive black hole to Earth that is currently undergoing such violent outbursts.

Mercury pollution is a global problem with local consequences: Emissions from coal-fired power plants and other sources travel around the world through the atmosphere, eventually settling in oceans and waterways, where the pollutant gradually accumulates in fish. Consumption of mercury-contaminated seafood leads to increased risk for cardiovascular disease and cognitive impairments.

In the past several years, a global treaty and a domestic policy have been put in place to curb mercury emissions. But how will such policies directly benefit the U.S.?

Scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have produced self-consistent computer simulations that capture the evolution of an electric current inside fusion plasma without using a central electromagnet, or solenoid. The simulations of the process, known as non-inductive current ramp-up, were performed using TRANSP, the gold-standard code developed at PPPL. The results were published in October 2015 in Nuclear Fusion. The research was supported by the DOE Office of Science.

Real world data: a gain for benefit assessments? This question was the focus of the Autumn Symposium of the German Institute for Quality and Efficiency in Health Care (IQWiG), which was held in Cologne at the end of November 2015. Speakers from Germany and abroad presented their different points of view on this topic. The presentations are now available on iqwig.de as multimedia presentations or PDF documents for downloading.

Where's the beef?

Injury and degeneration of fibro-cartilaginous tissues, such as the knee meniscus and the intervertebral disc, have significant socioeconomic and quality-of-life costs. But the development of effective treatment strategies to address pathologies in these load-bearing tissues has been hindered by a lack of understanding of the relationships between their structure and their function.

BINGHAMTON, NY - Thousands bound together are still thinner than a single strand of human hair, but with research from Binghamton University, boron nitride nanotubes may help build better fighter planes and space shuttles.

A team of scientists led by Changhong Ke, associate professor of mechanical engineering at Binghamton University's Thomas J. Watson School of Engineering and Applied Science, and researcher Xiaoming Chen were the first to determine the interface strength between boron nitride nanotubes (BNNTs) and epoxy and other polymers.

Trainers of dogs, horses, and other animal performers take note: a bacterium named Moorella thermoacetica has been induced to perform only a single trick, but it's a doozy. Berkeley Lab researchers are using M. thermoacetica to perform photosynthesis - despite being non-photosynthetic - and also to synthesize semiconductor nanoparticles in a hybrid artificial photosynthesis system for converting sunlight into valuable chemical products.

Using a recently developed technique to detect magnetic fields inside stars, a group of astronomers -- including Matteo Cantiello and Lars Bildsten from UC Santa Barbara's Kavli Institute for Theoretical Physics (KITP) -- has discovered that strong magnetic fields are very common in stars. The group's findings appear in the journal Nature.

"We have applied a novel theoretical idea that we developed just a few months ago to thousands of stars and the results are just extraordinary," said Cantiello, a specialist in stellar astrophysics at KITP.

Pasadena, CA -- New work from a team of astronomers led by Carnegie's Jennifer van Saders indicates that one recently developed method for determining a star's age needs to be recalibrated for stars that are older than our Sun. This is due to new information about the way older stars spin, as spin rate is one of the few windows into stellar ages. Their findings, published in Nature, have implications for our own Solar System, as they indicate that our own Sun might be on the cusp of a transition in its magnetic field.

At a critical point in the life of a star like the Sun its rotation stops 'slowing down', according to research published in the journal Nature by University of Birmingham scientists today (Jan. 4, 2016). This discovery challenges existing theories and has implications for our understanding of how the Sun and other stars influence their local environments, including planets, as they age.

Strong magnetic fields discovered in majority of stars -- Finding to impact understanding of stellar evolution

An international group of astronomers led by the University of Sydney has discovered strong magnetic fields are common in stars, not rare as previously thought, which will dramatically impact our understanding of how stars evolve.

Researchers have found a new way to measure the pull of gravity at the surface of a star. For distant stars with planets orbiting them, this information is key in determining whether any of those planets can harbour life.

The new method is described in a study published today in Science Advances. The research was led by University of Vienna's Thomas Kallinger and involved UBC Professor Jaymie Matthews as well as astronomers from Germany, France and Australia.

Tropical Cyclone Ula formed on Dec. 30 and continued tracking south of Pago Pago as NASA observed rainfall rates and saw an eye form the next day. Warnings were in effect in Fiji as Ula approaches.

A new way to test one of the basic principles underlying Einstein's theory of General Relativity using brief blasts of rare radio signals from space called Fast Radio Bursts is ten times, to one-hundred times better than previous testing methods that used gamma-ray bursts, according to a paper just published in the journal Physical Review Letters. The paper received additional highlighting as an "Editor's Suggestion" due to "its particular importance, innovation, and broad appeal," according to the journal's editors.