Heavens

The Universe forms fewer stars than it used to, and a CSIRO study has now shown why: compared to the past, galaxies today have less gas from which to make stars.

Dr Robert Braun (CSIRO Astronomy and Space Science) and his colleagues used CSIRO's Mopra radio telescope near Coonabarabran, NSW, to study far-off galaxies and compare them with nearby ones.

Light (and radio waves) from the distant galaxies takes time to travel to us, so we see the galaxies as they were between three and five billion years ago.

Cosmic distances are difficult to grasp and no less difficult to measure. When it comes to other galaxies or even remote parts of our own Milky Way, distance measurements are nothing but assessments, derived from indirect clues.

As the Office of Naval Research (ONR) increases its science and technology (S&T) investment in unmanned systems, a number of hurdles need to be overcome including autonomy and littoral operations, ONR's director of innovation said at an Aug. 18 conference on unmanned systems.

Sunspots spawn solar flares that can cause billions of dollars in damage to satellites, communications networks and power grids. But Stanford researchers have developed a way to detect incipient sunspots as deep as 65,000 kilometers inside the sun, providing up to two days' advance warning of a damaging solar flare.

The eighth tropical depression of the Atlantic Ocean hurricane season formed from the low pressure System 93L on Aug. 19 at 8 a.m. EDT and satellite data from NASA shows strong rainmaking potential as the depression moves out of the Caribbean and inland this weekend.

It is helpful -- even life-saving -- to have a warning sign before a structural system fails, but, when the system is only a few nanometers in size, having a sign that's easy to read is a challenge. Now, thanks to a clever bit of molecular design by University of Pennsylvania and Duke University bioengineers and chemists, such warning can come in the form of a simple color change.

Analysis of a piece of lunar rock brought back to Earth by the Apollo 16 mission in 1972 has shown that the Moon may be much younger than previously believed. This is concluded in new research conducted by an international team of scientists that includes James Connelly from the Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen. Their work has just been published in Nature.

A team of astronomers has used ESO’s Very Large Telescope (VLT) to study an unusual object called a Lyman-alpha blob [1]. These huge and very luminous rare structures are normally seen in regions of the early Universe where matter is concentrated. The team found that the light coming from one of these blobs is polarised [2]. In everyday life, for example, polarised light is used to create 3D effects in cinemas [3].

Why does Titan, Saturn's largest moon, have what looks like an enormous white arrow about the size of Texas on its surface? A research group has answered this question by using a global circulation model of Titan to demonstrate how planetary-scale atmospheric waves affect the moon's weather patterns, leading to a "stenciling" effect that results in sharp and sometimes surprising cloud shapes. "These atmospheric waves are somewhat like the natural, resonant vibration of a wine glass," said Jonathan L.

A spinning neutron star is tied to a mysterious tail -- or so it seems. Astronomers using NASA's Chandra X-ray Observatory have found that this pulsar, known as PSR J0357+3205 (or PSR J0357 for short), about 1,600 light years from Earth, apparently has a long, X-ray bright tail streaming away from it.

Type Ia supernovae are violent stellar explosions whose brightness is used to determine distances in the universe. Observing these objects to billions of light years away has led to the discovery that the universe is expanding at an accelerating rate, the foundation for the notion of dark energy. Although all Type Ia supernovae appear to be very similar, astronomers do not know for certain how the explosions take place and whether they all share the same origin.

Astronomers have discovered the darkest known exoplanet – a distant, Jupiter-sized gas giant known as TrES-2b. Their measurements show that TrES-2b reflects less than one percent of the sunlight falling on it, making it blacker than coal or any planet or moon in our solar system. The new work appears in a paper in the journal Monthly Notices of the Royal Astronomical Society.

“TrES-2b is considerably less reflective than black acrylic paint, so it's truly an alien world,” said astronomer and lead author David Kipping of the Harvard-Smithsonian Center for Astrophysics (CfA).

New research by scientists at the University of York gives a fresh perspective on the physics of black holes.

Black holes are objects in space that are so massive and compact they were described by Einstein as "bending" space. Conventional thinking asserts that black holes swallow everything that gets too close and that nothing can escape, but the study by Professor Samuel Braunstein and Dr Manas Patra suggests that information could escape from black holes after all.

The implications could be revolutionary, suggesting that gravity may not be a fundamental force of Nature.

Some vaccines are once-in-a-lifetime; others need a booster shot or two to maintain their potency. And then there's the flu vaccine, which only lasts a year. Strains of influenza virus change so much from year-to-year that new vaccines must be developed annually to target the strains of virus that are most likely to cause illness. But Howard Hughes Medical Institute (HHMI) scientists have now discovered a human antibody that recognizes many different flu strains. Understanding more about this antibody may help scientists design a longer-lasting vaccine against the influenza virus.

An antibody that mimics features of the influenza virus's entry point into human cells could help researchers understand how to fine-tune the flu vaccine to protect against a broad range of virus strains. Such protection could potentially reduce the need to develop, produce, and distribute a new vaccine for each flu season.