Heavens

Iowa State astrophysicist helps map the Milky Way's 4 spiral arms

AMES, Iowa – Iowa State University's Martin Pohl is part of a research team that has developed the first complete map of the Milky Way galaxy's spiral arms.

The map shows the inner part of the Milky Way has two prominent, symmetric spiral arms, which extend into the outer galaxy where they branch into four spiral arms.

Researchers make breakthrough in the production of double-walled carbon nanotubes

In recent years, the possible applications for double-walled carbon nanotubes have excited scientists and engineers, particularly those working on developing renewable energy technologies. These tiny tubes, just two carbon atoms thick, are thin enough to be transparent, yet can still conduct electricity. This combination makes them well-suited for advanced solar panels, sensors and a host of other applications.

Water in the early universe

A research group led by graduate student Violette Impellizzeri from the Max Planck Institute for Radio Astronomy has used the 100 m Effelsberg radio telescope to detect water at the greatest distance from Earth so far. The water vapour was discovered in the quasar MG J0414+0534 at redshift 2.64, which corresponds to a light travel time of 11.1 billion years, a time when the Universe was only a fifth of the age it is today. The water vapour is thought to exist in clouds of dust and gas that feed the supermassive black hole at the centre of the distant quasar.

Where did Venus's water go?

Venus Express has made the first detection of an atmospheric loss process on Venus's day-side. Last year, the spacecraft revealed that most of the lost atmosphere escapes from the night-side. Together, these discoveries bring planetary scientists closer to understanding what happened to the water on Venus, which is suspected to have once been as abundant as on Earth.

Cookie cutter in the sky

Black holes can now be thought of as donut holes. The shape of material around black holes has been seen for the first time: an analysis of over 200 active galactic nuclei—cores of galaxies powered by disks of hot material feeding a super-massive black hole—shows that all have a consistent, ordered physical structure that seems to be independent of the black hole's size.

Solar flare surprise

Solar flares are the most powerful explosions in the solar system. Packing a punch equal to a hundred million hydrogen bombs, they obliterate everything in their immediate vicinity. Not a single atom should remain intact.

At least that's how it's supposed to work.

"We've detected a stream of perfectly intact hydrogen atoms shooting out of an X-class solar flare," says Richard Mewaldt of the California Institute of Technology. "What a surprise! If we can understand how these atoms were produced, we'll be that much closer to understanding solar flares."

Looking for extraterrestrial life in all the right places

COLUMBUS, Ohio -- Scientists are expanding the search for extraterrestrial life -- and they've set their sights on some very unearthly planets.

Cold "Super-Earths" -- giant, "snowball" planets that astronomers have spied on the outskirts of faraway solar systems -- could potentially support some kind of life, they have found.

Such planets are plentiful; experts estimate that one-third of all solar systems contain super-Earths.

Astronomers dissect a supermassive black hole with natural magnifying glasses

The team of astronomers from Europe and the US studied the "Einstein Cross", a famous cosmic mirage. This cross-shaped configuration consists of four images of a single very distant source. The multiple images are a result of gravitational lensing by a foreground galaxy, an effect that was predicted by Albert Einstein as a consequence of his theory of general relativity. The light source in the Einstein Cross is a quasar approximately ten billion light-years away, whereas the foreground lensing galaxy is ten times closer.

Planet formation could lie in stellar storms rather than gravitational instability

New research suggests that turbulence plays a critical role in creating ripe conditions for the birth of planets. The study, to be published in The Astrophysical Journal, challenges the prevailing theory of planet formation.

Using three-dimensional simulations of the dust and gas that orbits young stars, the study demonstrates that turbulence is a significant obstacle to gravitational instability, the process that scientists have used since the 1970s to explain the early stage of planet formation.

The hottest white dwarf in its class

Astronomy & Astrophysics is publishing spectroscopic observations with NASA's space-based Far-Ultraviolet Spectroscopic Explorer (FUSE) of the white dwarf KPD 0005+5106. The team of German and American astronomers who present these observations show that this white dwarf is among the hottest stars known so far, with a temperature of 200 000 K at its surface. It is so hot that its photosphere exhibits emission lines in the ultraviolet spectrum, a phenomenon that has never been seen before.

Europa does the wave to generate heat

One of the moons in our solar system that scientists think has the potential to harbor life may have a far more dynamic ocean than previously thought.

If the moon Europa is tilted on its axis even slightly as it orbits the giant planet Jupiter, then Jupiter's gravitational pull could be creating powerful waves in Europa's ocean, according to Robert Tyler, an oceanographer with the University of Washington's Applied Physics Laboratory and author of a letter in the Dec. 11 Nature. As those waves dissipate, they would give off significant heat energy.

Drama in the heart of the Tarantula

This panoramic optical image of the Large Magellanic Cloud (LMC) is from the Magellanic Cloud Emission Line Survey (MCELS). Emission lines of hydrogen are red, singly-ionized sulfur is green and doubly-ionized oxygen is blue. The image highlights regions of star formation in the LMC, including supernova remnants and giant structures carved out by multiple supernovas.

(Photo Credit: NOAO/AURA/NSF/S. Points, C. Smith & MCELS team)

Wobbly planets could reveal Earth-like moons

Moons outside our Solar System with the potential to support life have just become much easier to detect, thanks to research by an astronomer at University College London (UCL).

Astronomers use ultra-sensitive camera to measure size of planet orbiting star

A team of astronomers led by John Johnson of the University of Hawaii's Institute for Astronomy has used a new technique to measure the precise size of a planet around a distant star. They used a camera so sensitive that it could detect the passage of a moth in front of a lit window from a distance of 1,000 miles.

Hubble finds carbon dioxide on an extrasolar planet

The NASA/ESA Hubble Space Telescope's international team of researchers has discovered carbon dioxide in the atmosphere of a planet orbiting another star. This is an important step along the trail of finding the chemical biotracers of extraterrestrial life, as we know it. These findings have been published in the Astrophysical Journal Letters, 9 December 2008.