Earth

The fin whale is the second-largest animal ever to live on Earth. It is also, paradoxically, one of the least understood. The animal's huge size and global range make its movements and behavior hard to study.

Earthquakes similar in magnitude to the 2004 Sumatra earthquake could occur in an area beneath the Arabian Sea at the Makran subduction zone, according to recent research published in Geophysical Research Letters.

The research was carried out by scientists from the University of Southampton based at the National Oceanography Centre Southampton (NOCS), and the Pacific Geoscience Centre, Natural Resources Canada.

It is not just our sense of taste that determines what a foodstuff "tastes" like. In fact, the tongue can recognize basic tastes like sweet, sour, salty, bitter and umami (savory). But to get that "rounded" taste experience, we also use our sense of smell – and strawberries provide a good example of this. The characteristic aroma of a fresh strawberry is the result of around a dozen different aroma compounds. One of these plays a particularly important role: HDMF (4-hydroxy-2,5-dimethyl-3(2H)-furanone), which is also known under the brand name Furaneol.

A recent study indicated that the urbanization in eastern China has significant impact on the observed surface warming and the temporal-spatial variations of urbanization effect have been comprehensively detected.

This work was led by YANG XiuQun, professor of meteorology in the Institute for Climate and Global Change Research, School of Atmospheric Sciences at Nanjing University. The article entitled "Urbanization and heterogeneous surface warming in eastern China" was published in Chinese Science Bulletin, 2013, No. 12.

CORVALLIS, Ore. – A new study suggests that overgrazing and other factors increase the severity of cheatgrass invasion in sagebrush steppe, one of North America's most endangered ecosystems.

The research found that overgrazed land loses the mechanisms that can resist invasion. This includes degradation of once-abundant native bunchgrasses and trampling that disturbs biological soil crusts. The work was published today in the Journal of Applied Ecology by researchers from Oregon State University, Augustana College and the U.S. Geological Survey.

ANN ARBOR---Leading nanoscientists created beautiful, tiled patterns with flat nanocrystals, but they were left with a mystery: Why did some sets of crystals arrange themselves in an alternating, herringbone style? To find out, they turned to experts in computer simulation at the University of Michigan and the Massachusetts Institute of Technology.

Dissolved organic matter in streams and rivers can be broken down by sunlight or bacteria, providing a fuel source for aquatic ecosystems and affecting carbon dioxide and carbon monoxide concentrations as the organic matter is mineralized.

Researchers know that the amount of organic matter in streams fed by forest landscapes and those fed by watersheds affected by human activity, such as croplands, pasture, or urban environments, can differ greatly. What is less well known is how the organic matter from these various environments evolves as it flows downstream.

CHAMPAIGN, Ill. — The sacred lotus (Nelumbo nucifera) is a symbol of spiritual purity and longevity. Its seeds can survive up to 1,300 years, its petals and leaves repel grime and water, and its flowers generate heat to attract pollinators.

Now researchers report in the journal Genome Biology that they have sequenced the lotus genome, and the results offer insight into the heart of some of its mysteries.

From brain to heart to stomach, the bodies of humans and animals generate weak magnetic fields that a supersensitive detector could use to pinpoint illnesses, trace drugs – and maybe even read minds. Sensors no bigger than a thumbnail could map gas deposits underground, analyze chemicals, and pinpoint explosives that hide from other probes.

The Arctic was very warm during a period roughly 3.5 to 2 million years ago--a time when research suggests that the level of carbon dioxide in the atmosphere was roughly comparable to today's--leading to the conclusion that relatively small fluctuations in carbon dioxide levels can have a major influence on Arctic climate, according to a new analysis of the longest terrestrial sediment core ever collected in the Arctic.

Scientists have identified many benefits for restoring oyster reefs to Chesapeake Bay and other coastal ecosystems. Oysters filter and clean the water, provide habitat for their own young and for other species, and sustain both watermen and seafood lovers.

A new study co-authored by Professor Roger Mann of the Virginia Institute of Marine Science adds another item to this list of benefits—the ability of oyster reefs to buffer the increasing acidity of ocean waters.

Analyses of the longest continental sediment core ever collected in the Arctic, recently completed by an international team led by Julie Brigham-Grette of the University of Massachusetts Amherst, provide "absolutely new knowledge" of Arctic climate from 2.2 to 3.6 million years ago.

CAMBRIDGE, MA -- At any given time, cirrus clouds — the thin wisps of vapor that trail across the sky — cover nearly one-third of the globe. These clouds coalesce in the upper layers of the troposphere, often more than 10 miles above the Earth's surface.

Cirrus clouds influence global climate, cooling the planet by reflecting incoming solar radiation and warming it by trapping outgoing heat. Understanding the mechanisms by which these clouds form may help scientists better predict future climate patterns.

In a joint project between the Universities of Strathclyde and Glasgow, Imperial College London and the National Physical Laboratory, researchers have developed a portable way to produce ultracold atoms for quantum technology and quantum information processing.

Their research has been published in the journal Nature Nanotechnology, where it is featured on the front cover.

Scientists at the University of Liverpool have shown that some atomic nuclei can assume the shape of a pear which contributes to our understanding of nuclear structure and the underlying fundamental interactions.

Most nuclei that exist naturally are not spherical but have the shape of a rugby ball. While state-of-the-art theories are able to predict this, the same theories have predicted that for some particular combinations of protons and neutrons, nuclei can also assume very asymmetric shapes, like a pear where there is more mass at one end of the nucleus than the other.