Earth

Many birds feeds on mosquitoes that spread the West Nile virus, a disease that killed 286 people in the United States in 2012 according to the Centers for Disease Control. Birds also eat insects that can be agricultural pests. However, rising temperatures threaten wild birds, including the Missouri-native Acadian flycatcher, by making snakes more active, according to University of Missouri biologist John Faaborg.

While carbon dioxide concentration in the atmosphere increases, forests enhance their water use efficiency: They can take up more gas without losing more water. According to long-term measurements at many forest locations in the northern hemisphere, stomata on leaf surfaces react to more carbon dioxide, which is an example of the strategies of ecosystems to cope with changes. The study of researchers from the USA and KIT is now reported in the journal "Nature" (DOI: 10.1038/nature12291).

Research at the University of Liverpool has found that variations in the length of day over periods of between one and 10 years are caused by processes in the Earth's core.

The Earth rotates once per day, but the length of this day varies. A yeas, 300million years ago, lasted about 450 days and a day would last about 21 hours. As a result of the slowing down of the Earth's rotation the length of day has increased.

Bioenergy with carbon capture and storage (BECCS) can reverse the global warming trend and push temperatures back below the global target of 2°C above pre-industrial levels, even if current policies fail and we initially overshoot this target.

This is according to a new study, published today, 11 July, in IOP Publishing's journal Environmental Research Letters, which shows that ambitious temperature targets can be exceeded then reclaimed by implementing BECCS around mid-century.

Scientists at the UK's National Physical Laboratory (NPL) have performed the most accurate measurement yet of the Boltzmann constant.

While the impact of such an achievement is not immediately obvious, the measurement could revolutionise the way we define temperature, replacing the standard method that has been used for over 50 years.

The new measurement is 1.380 651 56 (98) × 10−23 J K−1, where the (98) shows the uncertainty in the last two digits, which amounts to an uncertainty of 0.7 parts per million --almost half the previous lowest uncertainty.

Scientists at the Universities of Liverpool, Plymouth, and Radboud, Netherlands, have challenged the view that giant animals are found in polar seas because of a superabundance of oxygen in cold water.

It is thought that giant insects and other creatures hundreds of millions of years ago evolved due to a superabundance of oxygen and that this could also explain the existence of giant sea creatures today. The new research, published in Functional Ecology, however, suggests that this may not be the case.

Spurred by increasing levels of atmospheric carbon dioxide, forests over the last two decades have become dramatically more efficient in how they use water, a Harvard study has found.

Studies have long predicted that plants would begin to use water more efficiently as atmospheric carbon dioxide levels rose. A research team led by Research Associate Trevor Keenan and Assistant Professor of Organismic and Evolutionary Biology Andrew Richardson, however, has found that forests across the globe are becoming more efficient than expected.

CAMBRIDGE, MA -- There are several ways to "trap" a beam of light — usually with mirrors, other reflective surfaces, or high-tech materials such as photonic crystals. But now researchers at MIT have discovered a new method to trap light that could find a wide variety of applications.

DURHAM, N.H., July 10, 2013 – A study by scientists with the U.S. Forest Service, Harvard University and partners suggests that trees are responding to higher atmospheric carbon dioxide levels by becoming more efficient at using water.

WASHINGTON -- While numerous studies are under way to determine the impacts of the Deepwater Horizon oil spill on the Gulf of Mexico, the extent and severity of these impacts and the value of the resulting losses cannot fully be measured without considering the goods and services provided by the Gulf, says a new report from the National Research Council. The congressionally mandated report offers an approach that could establish a more comprehensive understanding of the impacts and help inform options for restoration activities.

Efforts to develop a safer form of acetaminophen — the pain and fever-reducer that is one of the most widely used drugs — have led to discovery of substances that may have less potentially toxic effects on the liver. A report on the research appears in ACS Medicinal Chemistry Letters.

WASHINGTON -- The U.S. Geological Survey (USGS) and other scientific institutions are using social media and crowdsourcing to learn more about earthquakes, according to a new report. These techniques provide inexpensive and rapid data to augment and extend the capabilities provided by traditional monitoring techniques.

All the objects around us emit thermal radiation. Usually, this radiation can be described very accurately using Planck's law. If, however, the radiating object is smaller than the thermal wavelength, it behaves according to different rules and cannot emit the energy efficiently. This has now been confirmed by a team of researchers at the Vienna University of Technology. These findings are important for heat management of nano-devices and also for the science of aerosols - microparticles suspended in air, which influence the climate.

Planck's Law

New research by UM bioclimatology Assistant Professor Ashley Ballantyne models the influence of Arctic sea ice on Arctic temperatures during the Pliocene era. His research was published in the Research Highlight section of the July issue of Nature Geoscience. The full paper will be published in Palaeogeography, Palaeoclimatology, Palaeoecology: An International Journal for the Geosciences.

The basics of how a muscle generates power remain the same: Filaments of myosin tugging on filaments of actin shorten, or contract, the muscle – but the power doesn't just come from what's happening straight up and down the length of the muscle, as has been assumed for 50 years.

Instead, University of Washington-led research shows that as muscles bulge, the filaments are drawn apart from each other, the myosin tugs at sharper angles over greater distances, and it's that action that deserves credit for half the change in muscle force scientists have been measuring.